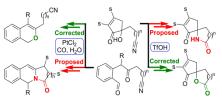
Structure and Mechanism Revision of a Catalyzed Cyclization of Benzaldehyde Bearing Alkyne-Nitrile

Peter Šafář,[†] Štefan Marchalín,^{*,†} Michal Šoral,[‡] Ján Moncol,[§] and Adam Daïch^{*,}"


[†]Department of Organic Chemistry, Faculty of Chemical & Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-81237 Bratislava, Slovak Republic

[‡]Central Laboratories, Faculty of Chemical & Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-81237, Bratislava, Slovak Republic

[§]Department of Inorganic Chemistry, Faculty of Chemical & Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-81237, Bratislava, Slovak Republic

"Normandie Univ, UNILEHAVRE, FR 3038 CNRS, URCOM, 76600 Le Havre, France. EA 3221, INC3M CNRS-FR 3038, UFR des Sciences et Techniques, Université du Havre, BP : 1123, 25 rue Philipe Lebon, F-76063 Le Havre Cedex, France

ABSTRACT: Pt(II)-catalyzed carbocyclization of benzaldehyde containing a keto-nitrile functionality resulted in the formation, respectively, of isochromenes and spiro-lactones instead of fused lactams and spiro-lactams as was previously reported. The reaction mechanism was proposed and the products were identified by multi-

dimensional NMR, IR and X-ray analysis. The structure of these new products was also confirmed by their synthesis in an unambiguous manner using practical and short approaches.