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b Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil   

A R T I C L E  I N F O   

Keywords: 
Botrytized wine 
Age prediction 
Colour histogram 
Partial least square regression 
Wine quality control 

A B S T R A C T   

The prediction or confirmation of age is an important field in evaluation of wine’s value. Such type of studies 
commonly requires a number of data sets describing changes in chemical composition and/or related physical 
properties. Digital images of wines captured by a webcam represent an easy and low-cost approach to prevent 
frauds connected to the age of wines. In this work, a combination of frequency histograms including grey scale, 
red-green-blue (RGB) and hue-saturation-value (HSV) colour models extracted from digital images were used to 
evaluate the age of botrytized and related varietal wines produced during a 1989–2019 period at different 
countries. The main findings showed that digital images carry the appropriate chemical information for the age 
assignment and PLS-type models were able to estimate wine age only one latent variable. Grey levels enabled to 
find figure of merit values similar to the PLS model based on full histogram. An additional interval selection of 
the histograms with interval PLS allows improving accuracy of variable assessment and achieving lower error at 
a cross-validation step, RMSECV decreases from 3.6 years to 3.1 years. When models were employed to predict 
an external set of samples similar results were found, RMSEP equal to 2.8 years and 2.9 years for PLS and iPLS, 
respectively. However, a slight deterioration of the results was observed for the PLS model based on full grey 
levels (RMSEP 3.2). In general, these non-destructive measurements do not generate residuals and can be per-
formed without sophisticated equipment with a reasonably accurate response.   

1. Introduction 

Wine vintage and aging period belong to crucial factors influencing 
prices of high-quality wine [1]. This is consistent with higher costs of 
longer wine maturation especially in the wood barrels [2,3]. Further-
more, an increase in wine prices is typically observed for bad vintages 
with lower distribution of the wine on the market [4]. During oxidative 
aging in barrels, some biochemical processes occur like anthocyanin and 
tannin polymerization, as well as phenolic compounds exchange be-
tween wood and wine [5–7]. Considering a large number of fraudulent 
acts in the areas of food and beverage industry, composition data are 
especially useful in identifying frauds and adulterations [8,9]. A few 
studies have been published on prediction of the age of wines, based on 
chemical composition of wine (e.g. organic acid content, furanoids, 
phenolic and volatile compounds) [10–13], or spectroscopic analysis 
including UV–Vis and infrared spectrometry, especially in the near-IR 
range [14–16], and a voltammetric electronic tongue [17]. 

In the context of food analysis, digital images have been reported in 
the literature for different purposes [18]. As to wine analysis, digital 
image data were used to establish geographic origin, winemaker, and 
grape type [19], to detect adulterations in aged wine [20]. A colori-
metric sensor array was also tested for classification of rice wine ac-
cording to different marked ages [21]. However, this study was mainly 
focused on screening analysis, rather than on the sample age prediction. 
Overall colour information extracted from a digital image can be 
expressed through an average value or described with univariate models 
based on the calibration line [22]. Use of full histograms is more 
frequent [18], and it provides multivariate data suitable for processing 
with several chemometric tools. Besides wine analysis, a combination of 
chemometric tools and digital imaging was exploited for food samples 
and other types of samples. The selected chemometric approaches could 
include more traditional tools, like component analysis (PCA), linear 
discriminant analysis (LDA), partial least squares - discriminant analysis 
(PLS-DA), partial least squares (PLS), as well as more complex methods 
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such as back-error propagation-artificial neural network (BP–ANN), 
support vector machines (SVM), random forest, among others [18–21]. 

In this study, a combination of frequency histograms including grey 
scale, red-green-blue (RGB) and hue-saturation-value (HSV) colour 
models extracted from digital images were used to evaluate the age of 
botrytized and related varietal wines produced during a 1989–2019 
period at different countries. This study presents a quick, cheap and 
highly accurate approach based on frequency histograms extracted from 
digital images for age prediction of different types of white wines. 

2. Materials and methods 

2.1. Samples 

Forty-seven wine samples produced from 1989 to 2019 in Slovakia 
(28), Hungary (4), Ukraine (2), France (5) and Austria (8) were selected 
for evaluation. A list of all the studied samples with labelling, classifi-
cation and vintage year is shown in Table 1S. The samples included 
botrytized wines and related varietal wines (Furmint, Lipovina, Muscat 
grape varieties, Sauvignon Blanc and Semillon, Chardonnay, Weiss-
burgunder, Welschriesling), which were authentic and obtained directly 
from the producers. The wines were stored in glass bottles at 4 ◦C. After 
opening a 20 mL wine aliquot was transferred into a vial and equili-
brated at 20 ◦C before image acquisition. 

2.2. Instrumentation 

A white cardboard box equipped with a webcam (see Fig. 1S the 
schematic diagram of the homemade system) was designed to acquire 
digital images under the controlled conditions. The WC040 MULTI-
LASER webcam with glass lenses and a USB connector were fixedly 
positioned at a distance of 15 cm from the sample at 180◦angle with 
respect the samples. The equipment was operated under the following 
conditions: Frame rate: 28 FPS; Picture mode: RGB; MegaPixels Web-
cam: 0.31 MP; Webcam Resolution: 640 × 480; Screen Aspect Ratio: 
1.33; JPEG file size: 268.03 kB; Bitrate: 7.3 MB/s; Number of colours: 
55071; Lightness: 57.84%; Brightness: 59.10%; Brightness: 57.65%; 
Hue: 143 and Saturation: 6.05%. This image acquisition system was 
previously used in [23]. The acquired images were saved in a laptop 
computer as a JPEG file format and processed in a MatLab 2019b 
environment. The grayscale, red-green-blue (RGB) and Hue-Saturation- 
Value (HSV) features were extracted by ImageGUI interface [24]. A set 
of data arranged in a 47 × 1792 array that was subsequently submitted 
to chemometric treatments. A row of the array corresponds to the 
sample and the column to a colour level intensity. 

2.3. Data analysis 

An elliptical central area corresponding to a region of interest (ROI) 
was selected automatically and used for extraction of the histogram. 
Various colour models and parameters can be exploited to process dig-
ital images for development of analytical methods [18]. In order to 
avoid excessively redundant information and/or to generate a too large 
data matrix, in this case, red-green-blue (RGB) and Hue-Saturation- 
Value (HSV) colour models were considered as efficient colour de-
scriptors of the samples. Once that picture was stored in 24 bits format, 
256 colour levels is possible in a range of from 0 to 255 in each colour 
channel. Thus, each sample was represented by a 1 × 1792 row vector. 
At the preliminary evaluation step, PCA was performed on the set of 47 
mean centred histograms and this pre-processing strategy was used for 
all cases at the later modelling steps in the calibration phase. To build 
multivariate models for prediction of wine age, the initial data set was 
partitioned into a calibration set (Xcal sized 30 × 1792) and an external 
prediction set (Xpred sized 17 × 1792) by means of a SPXY algorithm 
(Sample set Partitioning based on joint x–y distances) [25]. Model 
dimensionality was optimised based on the calibration set by leave one 

out cross validation (LOOCV) and Monte Carlo (MC) approach [26], 
which used ten cycles with 70% of the samples retained for calibration. 
Estimation of a suitable number of latent variables was carried out by 
means of Haaland and Thomas criterion [27]. Errors in LOOCV are 
subjected to a Fisher F-test in order to check the presence of outliers. The 
PLS model was improved by a variable selection using two different 
strategies, such as intervals-PLS (iPLS) algorithm [28] and intervals 
Successive Projection Algorithm coupled to PLS model (iSPA-PLS) 
[28–29]. Intervals with different widths (from 5 to 75) were compared 
with each other and the full PLS model (indicated as a zero interval). The 
models were assessed with square errors of calibration (RMSEC), vali-
dation (RMSECV) and prediction (RMSEP). Relative prediction error 
(REP), determination coefficient (R2) and presence of systematic error 
(bias) were also considered. 

All calculations were performed in a MatLab 2019b environment. 
Histograms extracted from DI and the sample set partition by SPXY al-
gorithm were processed according to homemade routines (available at 
http://www.ccen.ufpb.br/laqa/index.php/downloads) [24]. PCA 
calculation was performed using PCA Toolbox 1.5 available at https: 
//michem.unimib.it/ [30]. PLS and iPLS models including validation 
by LOOCV and MC were evaluated using MVC1 [26] (available at 
https://www.iquir-conicet.gov.ar/eng/div5.php?area=12) graphical 
interfaces. iSPA-PLS was calculed using the VSTOOLBOX GUI. 

3. Results 

3.1. Data set and general comments 

Fig. 1a presents a typical digital image of wine (DI) included in this 
study. An elliptical central area corresponds to a region of interest (ROI) 
was used for extraction of a histogram (Fig. 1b). Red-green-blue (RGB) 
and Hue-Saturation-Value (HSV) colour models were considered for 
processing of data. As can be seen at Fig. 1b, a colour histogram shows 
too narrow peaks at the grey scales, all channels of the RGB model and 
Value (V) range. On the other hand, hue and saturation channels show a 
wide dispersion with non-null values for most colour levels. 

Spectrophotometric evaluation of wine aging is commonly based on 
measurement of absorbance at 420 nm and 520 nm. A decrease in 
absorbance at 520 nm and an increase of absorbance at 420 nm are 
related to transformation of monomeric anthocyanins into polymeric 
forms during aging process [31]. In our case, it could be also responsible 
for a bimodal character of the histograms (Fig. 1b). In order to predict 
wine vintage, the average colour value of each channel was plotted 
against wine age (Fig. 2). A change of wine colour is clearly observed 
over a 20-year period (the bottom right corner of Fig. 2), which supports 
digital image evaluation in the study. 

Generally, not all average colour channels showed a correlation be-
tween the average values and age of the wines. The distribution pattern 
of the parameters was more prominently observed only for Grey scale 
and Green. In addition, the samples used in the study show colours that 
are described like red-orange tones, which are complementary to shades 
of green. Therefore, it is reasonable that these colour models could 
closely match wine colour variations with age. Grey scale represents a 
range of monochromatic shades from black to white that is computed of 
the RGB model, so the information observed in the green levels is also 
present in the grey scale. Furthermore, in the HSV colour model the most 
promising correlation was observed between Value (V) and wine age 
was observed. According to hue-oriented colour space of the HSV model, 
it is related to brightness or intensity of light present in the colour. HSV 
can be easily obtained from the RGB colour space using equations 
described in [32], where it is possible to see that a relationship between 
the Value of the HSV model and the RGB is more direct compared to the 
H and S channels. At this point, all three colour models (Grey scale, RGB 
and HSV) show useful information for age prediction of wine samples. 
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3.2. Exploratory analysis by PCA 

In order to perform a preliminary exploratory analysis, PCA was 
carried out for all the samples to find any pattern linked to wine age. The 
results can be visualized on a two dimensional (PC1 × PC2) score plot 
(see Fig. 2S). The first two principal components exhibit a cumulative 
variance of approximately 60% of all sources of variance in the dataset. 
Information related to the age of the wine plays an important source of 
variability in digital images associated with PC1. Note that the youngest 
samples are primarily located in the region of negative PC1 scores, 
whereas the samples of intermediate age could be found near zero values 
of PC1 and the oldest samples exhibit positive PC1 scores. These results 

suggest that digital images represent chemical information associated 
with wine age and could be exploited for that predictive purpose. In 
addition, no sample was characterised with anomalous behaviour, 
suggesting the absence of an outlier in the dataset. 

3.3. Calibration, interval selection and prediction 

Afterwards the PLS model was fitted on calibration data set using one 
LV. A single LV corresponds to the minimum on the curve of RMSECV vs. 
the number of latent variables included in the PLS model estimated by 
both LOOCV and MC strategies, indicating a convergence between both 
approaches (see Fig. 3S). As can be seen in Fig. 3a, no outlier was 

Fig. 1. Wine data: (a) typical DI and ROI, (b) histograms for all the samples. Where the regions identified from I to VII correspond to Grey scale, Red, Green, Blue, 
hue, Saturation and Value respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. A correlation plot between the average colour value against wine samples age.  

O. Vyviurska et al.                                                                                                                                                                                                                              



Microchemical Journal 190 (2023) 108738

4

detected in calibration set according to F test with 95% of statistic 
confidence. The visual inspection of y residuals estimated by LOOCV 
(see Fig. 3b) showed absence of a nonlinearity between histograms and 
wine age. In addition it was also confirmed by Durbin-Watson Test. 

In order to improve the PLS model, a variable selection of DI histo-
gram intervals was performed with two different approaches, such as 
intervals-PLS (iPLS) Algorithm and intervals Successive Projection Al-
gorithm coupled to PLS model (iSPA-PLS). Histograms were divided into 
different numbers of intervals (Fig. 3c), and were compared with each 
other and also to the full PLS model (indicated by a horizontal red line). 
As a result, some interesting findings could be highlighted in this case. 
All interval selection based models shows better accuracy in comparison 
to the PLS model. In general, the better results were obtained with 
iSPLA-PLS models, however the optimum number of intervals (55) was 
obtained by both variable selection strategies. The selected region was a 
narrow interval containing only the first 33 Gy scale values which is 
highlighted in yellow in Fig. 3d. Considering that only one interval in the 
greyscale zone was selected, the PLS model for the entire region with 
256 colours levels was calculated and the results compared to the other 
PLS models. Since the iPLS and iSPA-PLS models provided the same 
result, only the results for the iPLS will be displayed. The observed 
convergence is related to particular implementation of these methods. In 
the case of the iPLS calculations, the number of intervals w is defined by 
the user and only one interval among the w is selected. The number of 
intervals w is also set up at the first stage for the iSPA-PLS model, 
however an interval range from 1 to w-1 is available for further data 
processing. It is defined by the projection criteria of vectors (more de-
tails can be found in [29]) and such selection of the subset of intervals 
allows to minimize the CV error. In specific cases, where the best subset 
of intervals corresponds to one interval, iPLS and iSPA-PLS should show 
the same result. 

As can be seen from Table 1, small prediction errors were found in 
both steps (calibration and cross validation), indicating a good fitness 
between themselves. These results confirm a proper selection of one LV 
with the LOOCV and MC procedures. Comparing the PLS and iPLS 

models based on the range selection, we could observe an improvement 
in accuracy with a variable selection approach. However, the PLS model 
based on the use of the entire range of grey scale colour levels did not 
show significant improvements compared to the PLS model based on full 
histogram. The most efficient models for predicting the age of wine 
samples were obtained from grey, green and value scale and based on 
average calculations (see Fig. 2). The interval selections performed by 
two different approaches showed a convergence to a same narrow region 
belong to grey scale zone. Inspection of the Pearson correlation coeffi-
cient (r) between each ash level and the age of the wines (Fig. 4S) reveals 
that both interval selection methods highlighted the range with the 
highest r values. The plots of the values predicted in cross-validation and 
for the test set vs. actual wine age are shown in Fig. 4 for both PLS and 
iPLS models. 

The predicted values are distributed along the bisector of the pre-
dicted vs. actual plot without positive or negative trends, that are in 
agreement with the values of figures of merit shown in Table 1. All 
models were applied in the prediction of the independent set of samples 
and the results are summarized in Table 2. 

An F-test showed no outlier in prediction set (Figs. 5S, 6S and 7S). 
The good agreement between predicted and actual values can be seen 
also in both Table 2 and Fig. 4. Overall, iPLS showed improvements for 
calibration and cross-validation in comparison to the full model PLS. 

Fig. 3. Optimization of PLS multivariate models: (a) outlier detection computed by CV, (b) residuals in y calculated by CV, (c) interval width vs. MSECV and (d) the 
selected interval by both iSPA-PLS and iPLS. 

Table 1 
Statistical summary of calibration and cross-validation.  

Models LV RMSEC 
(years) 

REP 
(%) 

R2
cal RMSECV 

(years) 
REPCV(%) R2 

cv 

PLS 1  3.6  0.18  92.18  3.8  0.19  90.22 
Grey- 

PLS 
1  3.5  0.18  92.31  3.7  0.19  90.71 

iPLS 1  3.1  0.16  94.10  3.2  0.16  93.21  
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4. Conclusion 

Visual inspection of the plots reporting the correlations of the age of 
the wines with the average colour values in each channel (grey scale, G 
in RGB and Value in HSV) showed encouraging preliminary results. The 
obtained digital images were modelled by PLS as well as PLS coupled 
with the interval selection. The last strategy shows improvement with 
respect to the full model at the calibration and cross-validation stages. 
However, in the case of the production of an independent set of samples, 
similar results were achieved for all cases. Although the sample set 

included different types of producers and technological production 
processes and also from different countries, age information could be 
modelled and predicted by PLS. This proposed approach appears as an 
alternative and useful tool for an analysis and screening of this impor-
tant parameter of the wine market. It requires only a homemade system 
of a cardboard box with a white background and controlled lighting 
combined with a webcam. It is noteworthy that every procedure, in 
addition to being low cost, does not generate waste, complying with the 
sustainability guidelines of green chemistry. Last but not least, the 
combined simplicity of PLS and digital images opens up a series of 
possibilities for determining the age of wines through on-site analysis, 
since the proposed method can be adapted to the use of mobile devices 
such as smart phones. 
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Fig. 4. Actual versus estimated wine age for all model in both cross validation and prediction step.  

Table 2 
Statistical summary of prediction. Bias test t-test at 95% Statistical confidence 
tcrit 1.7459.  

Models PLS iPLS Gray-PLS 

RMSEP 2.80 2.90 3.20 
REP 0.14 0.14 0.16 
R2 95.61 93.36 96.61 
bias absent (tcal =

1.1676) 
absent (tcal =
1.5439) 

absent (tcal =
1.5439)  

Acutual Predicted SD Predicted SD Predicted SD 

2015 2011  0.4 2014  0.8 2013  0.6 
2008 2009  0.3 2013  0.7 2012  0.6 
1990 1995  0.9 1996  1.0 1997  0.9 
2013 2016  0.8 2014  0.8 2015  0.8 
1989 1994  1.0 1994  1.1 1995  0.9 
2012 2009  0.3 2012  0.7 2010  0.4 
2015 2015  0.7 2014  0.8 2015  0.8 
2011 2012  0.5 2013  0.7 2013  0.6 
2015 2015  0.7 2014  0.8 2016  0.8 
2013 2014  0.6 2013  0.8 2014  0.8 
2013 2015  0.7 2014  0.8 2014  0.7 
2008 2010  0.4 2011  0.7 2010  0.5 
2015 2014  0.6 2013  0.8 2014  0.7 
2005 2005  0.3 2006  0.6 2003  0.5 
2006 2011  0.4 2012  0.7 2011  0.5 
2013 2011  0.4 2012  0.7 2009  0.4 
2007 2008  0.2 2008  0.6 2006  0.4  
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[25] R.K.H. Galvão, M.C.U. Araujo, G.E. José, M.J.C. Pontes, E.C. Silva, T.C.B. Saldanha, 
A method for calibration and validation subset partitioning, Talanta 67 (2005) 
736–740, https://doi.org/10.1016/j.talanta.2005.03.025. 

[26] F.A. Chiappini, H.C. Goicoechea, A.C. Olivieri, MVC1_GUI: A MATLAB graphical 
user interface for first-order multivariate calibration. An upgrade including 
artificial neural networks modelling, Chemom. Intell. Lab. Syst. 206 (2020) 
104162, https://doi.org/10.1016/j.chemolab.2020.104162. 

[27] R.K.H. Galvão, M.C.U. Araújo, W.D. Fragoso, E.C. Silva, G.E. José, S.F.C. Soares, H. 
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[32] L.F. Capitán-Vallvey, N. López-Ruiz, A. Martínez-Olmos, M.M. Erenas, A.J. Palma, 
Recent developments in computer vision-based analytical chemistry: A tutorial 
review, Anal. Chim. Acta 899 (2015) 23–66, https://doi.org/10.1016/j. 
aca.2015.10.009. 

O. Vyviurska et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.microc.2023.108738
https://doi.org/10.1016/j.microc.2023.108738
https://doi.org/10.1016/j.omega.2022.102717
https://doi.org/10.1016/j.omega.2022.102717
https://doi.org/10.1108/00070700010336445
https://doi.org/10.1108/00070700010336445
https://doi.org/10.1017/jwe.2022.20
https://doi.org/10.1108/eb008675
https://doi.org/10.1108/eb008675
https://doi.org/10.3390/foods9091160
https://doi.org/10.3390/foods9091160
https://doi.org/10.1016/j.foodchem.2008.07.096
https://doi.org/10.1016/j.foodres.2022.111178
https://doi.org/10.1016/j.foodres.2022.111178
https://doi.org/10.1111/j.1750-3841.2007.00308.x
https://doi.org/10.2147/IJWR.S14102
https://doi.org/10.2147/IJWR.S14102
https://doi.org/10.1021/jf048522b
https://doi.org/10.1016/j.talanta.2021.122857
https://doi.org/10.1016/j.lwt.2022.114004
https://doi.org/10.1016/j.jfca.2022.104951
https://doi.org/10.1016/j.talanta.2016.10.062
https://doi.org/10.1016/j.talanta.2016.10.062
https://doi.org/10.1016/j.talanta.2017.04.064
https://doi.org/10.1016/j.talanta.2017.04.064
http://refhub.elsevier.com/S0026-265X(23)00356-9/h0080
http://refhub.elsevier.com/S0026-265X(23)00356-9/h0080
http://refhub.elsevier.com/S0026-265X(23)00356-9/h0080
http://refhub.elsevier.com/S0026-265X(23)00356-9/h0080
https://doi.org/10.1016/j.bios.2011.05.046
https://doi.org/10.1002/cem.3242
https://doi.org/10.1016/j.foodchem.2019.126060
https://doi.org/10.1016/j.foodchem.2019.126060
https://doi.org/10.1016/j.fochx.2019.100046
https://doi.org/10.1016/j.foodchem.2012.11.124
https://doi.org/10.1016/j.foodchem.2012.11.124
https://doi.org/10.1007/s12161-017-1127-4
https://doi.org/10.1007/s12161-017-1127-4
https://doi.org/10.1039/C6AY01840H
https://doi.org/10.1016/j.talanta.2005.03.025
https://doi.org/10.1016/j.chemolab.2020.104162
https://doi.org/10.1016/j.chemolab.2007.12.004
https://opg.optica.org/as/abstract.cfm?URI=as-54-3-413
https://doi.org/10.1016/j.microc.2013.03.015
https://doi.org/10.1039/C3AY40582F
https://doi.org/10.1039/C3AY40582F
https://doi.org/10.1111/j.1745-4557.1993.tb00269.x
https://doi.org/10.1111/j.1745-4557.1993.tb00269.x
https://doi.org/10.1016/j.aca.2015.10.009
https://doi.org/10.1016/j.aca.2015.10.009

	Wine age prediction using digital images and multivariate calibration
	1 Introduction
	2 Materials and methods
	2.1 Samples
	2.2 Instrumentation
	2.3 Data analysis

	3 Results
	3.1 Data set and general comments
	3.2 Exploratory analysis by PCA
	3.3 Calibration, interval selection and prediction

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix A Supplementary data
	References


