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According to the Food and Agriculture Organization of the United Nations, food safety is defined as
“assurance that food will not cause harm to the consumer which is prepared and/or eaten according to its
intended use”. Regulatory authorities, food producers, and consumers are very interested in food
authenticity certification, imposing the need to establish new approaches for identifying and assessing
food quality markers. In this review, we present a description of the main analytical techniques and data
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critical analysis of advantages and disadvantages of the processing multivariate data in food analysis.
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1. Introduction

Food quality and authenticity is a permanent problem of food
production. Authentic foods must have a defined origin and quality,
and they must originate from precisely defined sources. An
essential requirement of authentic food is that all food components
must be in direct connection to vegetable or animal metabolism
from which they originate [1]. On the contrary, there are significant
efforts of food producers or sellers to reduce production costs, in
other words, to use cheaper, frequently less-valuable materials,
while they are offered to the consumers as “full-valuable” under the
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same name or brand. One outcome of using these methods is that
products may be altered in terms of their character, taste, nutri-
tional value, or overall quality due to the intentional addition of
undisclosed compounds. This can also result in the partial or
complete restriction of valuable components or their replacement
with less nutritionally valuable ones. Other common types of fraud
include changes to traditional recipes, declared technological pro-
cedures, source materials, or products, as well as the labeling of
products with the wrong geographical region or misuse of well-
known brands or protected marks.

Additionally, food safety and defense including food crime also
must be considered in order to get complex information about
particular food commodity. The difference between those terms is
intention, whether the act was intentionally (defense) or unin-
tentionally (safety) caused by a simple accident. If changes in food
commodity or its composition were done intentionally on purpose
to make economical profit or harm particular consumers (act of
terror or harm public health) such behavior must be classified as
food crime. According to the Food and Agriculture Organization of
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the United Nations, food safety is defined as “the assurance that
food will not cause harm to the consumer which is prepared and/or
eaten according to its intended use” [2]. Accordingly, World Health
Organization [3] aims to enhance at a global and country level the
capacity to prevent, detect, and respond to public health threats
associated with unsafe food. Even though food safety is related to
unintentional contamination of food that makes food harmful to
health, intentional acts, such as food fraud, may create food safety
issues. Moreover, to prevent harm to consumers, other concepts
such as food defense and food quality are interlaced, which
intrinsically imply the authenticity of the food, meaning its truthful
composition and preparation way [4]. Nowadays, several re-
quirements, such as enhanced nutritional value, satisfactory sen-
sory quality, health-promoting properties, or sustainable and
ecological food production, must be met by food industries in order
to assure food quality and safety [5]. For this reason, regulatory
authorities, food producers, and consumers are very interested in
food authenticity certification, imposing the need to establish new
approaches for identifying and assessing food quality markers [6].

At the beginning of the recent millennium food authenticity/
fraud, food quality and food safety were strictly separated terms
that were treated by different approaches. Food authenticity and
quality were assessed mostly by methods determining isotopic
ratios of stable elements or non-target profiling analytical methods.
On the other hand, food safety required precisely defined analytical
protocols for target analysis, usually published as internationally
recognized standards. Moreover, food safety is focused only on the
presence of dangerous chemicals such as allergens, pesticides,
pharmaceuticals, polycyclic aromatic hydrocarbons (PAHs), poly-
chlorinated biphenyls (PCBs), dioxins, etc. With the improvement
of understanding of food complexity, production processes as well
as the role of particular ingredients, it was proven that those terms
significantly overlap and some forms of manipulation with food
render them unsafe. Thus, the new term food integrity was intro-
duced in 2017 [7] that combines all qualitative, safety and fraud
aspects of food commodities. Food integrity refers to the product's
adherence to its label in terms of quality, including the presence of
the specified constituents in the correct quantities and the absence
of any undisclosed substances. Furthermore, when relevant, it ful-
fills the requirements of the technological process and geographic
origin. To put it differently, food integrity is “the product of speci-
fication defined such as quality and label claim” [8].

The introduction of the food integrity concept significantly
changes requirements on analytical methods, protocols and data
evaluation. Traditional methodologies consider a simplest way of
evaluation which is the analysis based on qualitative determination
followed by quantification only one or some specific compounds.
For example, minor organic acids can be used for the authentication
of some fruit juices [9]. This simple approach, however, can identify
only a specific type of fraud, e.g., decreasing citric/iso-citric acids
ratio indicates juice dilution or its adulteration using synthetic
citric acid [10].

Therefore, the more frequently used detection of illicit manip-
ulation is based on a comparison of selected criteria with a data-
base. A food authenticity database is a collection of data that have
been gathered using established methods taking into account a
number of authentic samples to ensure sufficient representative-
ness. Its purpose is to define the limits of natural variability of
defined parameters of a food commodity. One of the most
comprehensive and well-known examples of these databases is the
EU-Wine databank. In the context of a food authenticity database,
an authentic product is required to meet specific parameters that
have been established and recorded for each type of product. These
parameters include a given range of acceptable values, as well as
comments on how to interpret the data. Typically, the permitted
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values are based on a particular standard that has been established
for the given product [11]. Such databases must be created by in-
dependent laboratories and have to be continuously updated. The
quality and integrity assessment for a particular food commodity is
always a sum of strictly defined parameters and associated with
analytical protocols for the determination of selected compounds
(authentication markers), which are characteristic of a particular
food commodity, and simultaneously different for similar food
commodities. The utilization of this way requires as wide as
possible knowledge about the physical properties and chemical
composition of particular food commodities [12].

Various compounds are used as authentication markers, such as
amino acids, volatile organic compounds, major and trace ele-
ments, lanthanoids, fatty free acids, organic acids, carbohydrates,
anthocyanins, flavonoids, proteins, etc. The development of
instrumental methods in past years allowed researchers to also
utilize information about isotopic ratios of stable elements, how-
ever, regardless of very useful information [13], expensive instru-
mentation and especially very expensive access to available
databases make this method still unattractive for food producers
and sellers. Generally, this approach is time-consuming and re-
quires the utilization of many analytical methods and still can give
answers only on specific adulteration or manipulation with food
products. The broadening scope of the food integrity term also calls
for new approaches to its assessment. It is clear, that such a wide
term cannot be solved by the determination of one or several pa-
rameters. Considering the latter remarks, a plethora of analytical
methodologies aimed at food integrity have recently been reported
in the scientific literature. In the last decade, the development of
analytical techniques, methods and improvement of analytical
protocols has substantially improved the capability to reveal and
understand the complexity of food systems [5,14]. The main
analytical platform used for the detection of a wide range of mol-
ecules in different types of foods has been based on separation
techniques such as gas chromatography-mass spectrometry (GC-
MS), liquid chromatography-mass spectrometry (LC-MS), capillary
electrophoresis—mass spectrometry (CE-MS). Additionally, several
spectralprint techniques such as vibrational spectroscopy (mid-
infrared (MIR), near-infrared (NIR), and Raman), fluorescence
spectroscopy (FS), ultraviolet—visible spectroscopy (UV—Vis), nu-
clear magnetic resonance (NMR) are among the most reported
[15,16].

Considering that foods are challenging heterogeneous systems,
which include complex mixtures of different molecular families
with a wide range of molecules present at very different concen-
tration levels, it is necessary to use various modern analytical
methods that produce a large set of different data. Moreover,
multivariate data generation and modeling can be a smart way to
gain a better understanding of food integrity. Notwithstanding,
extracting essential information from these datasets in their raw
form often is too difficult and their assessment and interpretation
are usually not straightforward. For that, it should be kept in mind
that owing to the acquired data being made up of thousands of
variables, it is almost impossible to interpret them without the help
of the appropriate statistical mathematical tools, when applied in
the context of chemical and/or physical-chemical information
modeling is called chemometric.

This review provides a brief description of the main analytical
techniques and data acquisition used in food analysis, as well as
their characteristics from the perspective of data processing in the
context of pattern recognition (PR). Additionally, a roadmap is
presented from exploratory analysis to the final model, which in-
cludes sampling and partitioning of sample sets, preprocessing, and
the most commonly used PR chemometric tools. The review also
presents a survey of applications of different methodologies that
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have been developed up to date, along with practical examples, and
a critical analysis of the advantages and disadvantages of process-
ing multivariate data in food analysis.

2. Instrumentation and data acquisition

Food commodities are complex mixtures consisting of
numerous chemical compounds present at various concentration
levels. To assess food quality and safety, diverse instruments,
measurement techniques, experimental designs, and data sources
must be employed. However, each type of analytical method, pro-
tocol, or instrumental setup utilizes various measurement princi-
ples that reflect specific food properties and provides different
measured signals converted to data sets followed up treatment by
different approaches. One of the most successful treatments con-
sists of the application of a PR algorithm that is often used to
classify food samples based on selected criteria [17]. The reliability
of classification models depends on a deep understanding of the
type, structure, nature, and dimensionality of acquired data to
select the most effective chemometric algorithms to solve a clas-
sification problem. The obtained data can be classified in different
manners as displayed in Fig. 1. The most useful way for under-
standing the final data structure is to consider the outputs gener-
ated by a specific implemented analytical technique.

When final data contain only a single value (e.g., measurement
of temperature, pH, or the concentration of a single compound), the
data are considered as “zeroth-order” data (scalar). Thus, for M
samples, they can be grouped to form a column vector. In case of
multiple pieces of information per sample are recorded (like
spectra, chromatogram, or even concentration of different com-
pounds (as depicted in Fig. 1a and b), such data structure corre-
sponds to a row vector of size 1 x N. While in the first case (Fig. 1a)
the total ion chromatogram (TIC) is a continuous profile with a
characteristic shape; in the second one (Fig. 1b), the areas are
discrete data. Fig. 1d (continuous data vector) and 1e (discrete data
vector) are similar scenarios. So, the final data structure becomes a
set of independent variables (N) measured for M samples, and a
matrix X (M x N) is arranged. Depending on the purpose of the
analysis, the row vector (row in obtained data matrix) can be
treated as “first-order” data. Additionally, also zeroth-order infor-
mation (column vector) can be extracted from the first-order data
matrix (e.g., the area under the curve between specific variables or
the peak intensity of a particular variable). In turns, instruments
providing two-dimensional data (a full matrix Xk like depicted in
Fig. 1c, f,1g, 1h and 1K) such as GC-MS, excitation-emission matrix
in spectroscopy, etc.) form a set of M matrices obtained for each
analyzed sample which can be arranged at least in three different
manners: (i) three-dimensional data tensor X (M x K x N) or
bidimensional (ii) unfolded or (iii) augmented matrix. Such data are
called “Second-order” data. On this basis, an alternative nomen-
clature has been suggested in which the data are named according
to the number of ways (modes) of an array for a sample set. Then,
when more than one sample is analyzed, the recorded zeroth-order
data is one-way data; first-order data is two-way data, second-
order data is three-way, and so on. Thus, it is often the case that
having measurements of a completely different nature, a similar
matrix X (M x N) can be generated [18—20].

Multidimensional chromatography adds a new temporal
dimension to the data by introducing retention times from the
second column, resulting in a one-unit increase in data order. Data
produced by multidimensional chromatographic systems will have
a tq (retention times in column 1) x t; (retention times in column
2) x detection structure. If the detection involves a single channel
that generates only intensities, such as GC x GC — FID or LC x LC —
FLD (with excitation -Aex and emission — Ay at a specific

Trends in Analytical Chemistry 164 (2023) 117105

wavelength) the resulting data will resemble Fig. 1g. However, if the
detection records an entire profile, such as GC x GC — MS (m/z
fragments) or LC x LC — FLD (with excitation at a specific wave-
length Aex and recording an entire emission spectrum), the data can
be organized into a three-way array per sample, which allows a set
of samples to be arranged in a four-way array. Other experimental
systems can also produce higher-order data, such as EEM recorded
at different pH, kinetics of a repeated action at different pH
monitored by a spectroscopic technique (time x wavelength x pH)
are examples [19,20].

Data used in food characterization are, in general, multivariate
in nature since they consist of a list or array of values according to
the complex composition of food matrices. Depending on the
analytical technique applied for food analysis, the generated data
for a sample could have two, three or more modes (dimensional
structure). The structure and arrangement of the datasets are also
relevant for the choice of the suitable chemometric tool to be
applied to a food issue.

2.1. Spectroscopies

A wide variety of spectroscopic techniques such as
ultraviolet—visible spectroscopy (UV—Vis), vibrational spectros-
copy (infrared (IR), near-infrared (NIR), Raman, fluorescence spec-
troscopy, nuclear magnetic resonance (NMR), electron spin
resonance (ESR), and X-ray spectroscopy have been used in spectral
print studies performed on food matrices [18—21]. Most of these
techniques require a relatively small amount of sample and per-
formed analyses are non-destructive, fast, easy, direct (solvent-
free) and they allow obtaining information about several com-
pounds simultaneously. It is well known that a single wavelength
does not provide enough information to cover most authenticity
issues. However, these spectroscopic techniques could deliver
hundreds of other pieces of information (from single wavelength
measurement through recording continuous spectra at many
wavelengths) that could be used for both, inferring individual
contribution of different chemical components present in a food
sample, as well as their interactions. For this reason, statistical
analysis of the spectral shape in a sample (obtained in defined
instrumental and sample conditions) can be interpreted as a
fingerprint itself [22]. In this sense, all above mentioned spectro-
scopic techniques are able to provide spectral data recorded for a
single sample that correspond at least to first-order data. Addi-
tionally, some techniques such as multidimensional fluorescence
spectroscopy, 2D NMR, etc., are capable to provide second-order
data.

2.2. Separation techniques

In the last 10 years, there has been a significant increase in the
application of PR techniques applied to data obtained from sepa-
ration techniques coupled to spectroscopic detectors, especially
applied to solve food integrity problems [18,23]. The final data
outputs from separation methods are chromatograms/electrophe-
rograms, which contain separated (fully/partially) peaks. The
measured chromatographic/electrophoretic profiles gathered for
several samples generate a matrix. If the peaks are integrated and
the areas obtained, they become the new variables, consequently,
another kind of matrix can be arranged. Both separation profile and
peaks areas involve the use of first-order data that can be organized
in a matrix containing continuous and discrete variables,
respectively.

Another fact that should be considered is similar analytical in-
formation presented in both matrices should be treated and visu-
alized as completely different data structures since the natural



A. de Araiijo Gomes, S.M. Azcarate, I. Spanik et al.

a) Chromatography (1)

elution time

b) Chromatography (I1)
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c) Monochannel images

pixels 2

samples
samples

d) Spectroscopy

wavelengths

samples
samples

g) Chromatography (lll)

samples

j) Batch monitoring

samples
samples

e) Environmental data

Independent variables

h) EEM Fluorescence

Intensity image

pixels 1

X
(MxN)

f) EEM Fluorescence

emission

Fluorescence

(MxN)

excitation

i) Hyperspectral image

& pixels 2
Hyperspectral image

X
(MxN xK)

pixels 1

k) Environmental monitoring

Fig. 1. Examples of how a matrix X (M x N) can be obtained by different instruments: a) represents chromatographic profiles, while b) represents the integrated areas of peaks in
chromatographic profiles; c) represents a mono channel image; d) a common spectroscopy case; e) arrangement of independent variables in environmental data, and f) the matrix
obtained in excitation-emission fluorescence. Also, several three-way structures generated by different instruments: g) hyphenated chromatographic device; h) excitation-emission
fluorescence; i) hyperspectral image; j) batch monitoring with spectral devices, and k) environmental monitoring [21]. The data for a sample set is displayed in red, while structured
data for a single sample is displayed in yellow. In parts a/d and b/e, the rectangle and square at the top represent a vector and a scalar, respectively.

connection between variables in the first matrix is lost in the sec-
ond matrix [24]. These approaches are not usually applied in food
integrity assessment since foods are complex and dynamic sam-
ples, and their multiple constituents generally overlap in the
elution/migration time mode. Consequently, several fingerprint
approaches have been developed throughout the food chain to
monitor food integrity issues. In this context, hyphenation from
separation techniques besides spectroscopic techniques such as
diode array detection, fast scanning fluorescence detection, or mass

detector have provided many possible analytical strategies for PR
studies in foods. Thus, second-order data are generated and
modeled; either unfolded (two-way structure) or retained as a
three-way structure when several samples are analyzed.

Another fact that should be considered when recording and
modeling first- or second-order data obtained from some separa-
tion technique is that measurements usually involve some lack of
reproducibility in the peak profiles in terms of their shape and
elution time. Considering that the subsequent data modeling is
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highly dependent on their structure, implementation of adequate
data pre-processing is often mandatory prior to modeling. More-
over, considering the complexity of the chromatographic data
structure, it is also important to know the linkage between the
variables to understand the nature of the data. For instance, data
obtained by hyphenated chromatographic devices such as GC with
mass spectroscopic detection can be arranged in a three-way
structure where the variables are dependent on the elution times
and the mass fragments. In LC coupled with DAD detection, for
example, variables can be considered independent of each other. It
is important to note that the dependence or independence between
variables in a data set is a critical point to define a suitable algo-
rithm to model them [25,26].

2.3. Sensors

In the last decade, sensor technology was sufficiently developed
and became often used to investigate food integrity. Such methods
emulate human senses to predict sensory scores of foods. The most
common devices for instrumental sensory analyses are electronic
noses, electronic tongues and colorimetric techniques that trans-
form some form of input signal acquired from the sample into
electric, magnetic, chemical, thermal, or radiation energy. The re-
sponses are then correlated to aroma, taste and visual attributes or
parameters. The response sensor provides output data in the shape
of the vectors. Data obtained from sensors are usually related to
food aroma and taste [27].

2.4. Image-based methods

Digital images (DI) were not developed with the purpose to be
used as an analytical signal, but in the last two decades, there has
been witnessed exponential growth of this type of application,
including in food authenticity [28]. Probably due to the low cost,
simplicity, and possibility of developing out-of-the-lab analytical
methodologies. Briefly, a digital image is the capture of a real scene
by a device. The process of capturing and storing one involves
compressing and discretizing the real scene. This is done using
mathematical models to describe color. Color plays a very impor-
tant role since it is directly related to concentration. Basically, the
use of digital images in food authenticity and other areas consists of
exploring numerical information from color models as input for
multivariate approaches. Probably the best-known color model is
the RGB (Red, Green, Blue) space, but others such as grayscale, In-
ternational Commission on Illumination (CIE), hue-oriented color
space (hue-H, saturation-S and value -V) among others have been
explored for evaluation of food integrity. A complete description of
the currently used color model and mathematical description can
be found elsewhere [29]. In order to measure and process digital
images for food authenticity analysis, first of all, it is important to
make sure that the desired information is related to color change
within a set of samples. In this way, a source of variation can be
captured by a multivariate approach, otherwise, the attempt to
create a new methodology may fail. Supposing that the first
requirement is fulfilled and there is no commercial manifold to
capture DI for a specific analysis goal, this must be developed. On
the other hand, to ensure robustness and reproducibility of recor-
ded DI the lighting, device type (smartphone, camera or scanner),
distance from the camera to sample, image resolution and the
image format must be taken into account. Recently some home-
made manifolds for image acquisition were summarized [30] and a
common feature is that almost all of them are closed systems to
avoid spurious radiation, with a controlled lighting source. Once
the images have been registered and saved, an image processing
tool package for the purpose of building multivariate models is
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required. Otherwise, own programming routines in some pro-
gramming language like MatLab®, R or any other can be also
developed. A list of free software that can be implemented for these
purposes is displayed in Table S1.

2.5. Hyperspectral imaging

Although digital color systems have found widespread use in
food quality control, the information that can be obtained from a
color camera is limited to the vision range of the three-color
channels. To overcome this problem, hyperspectral imaging sys-
tems have recently emerged as a process analytical tool for food
quality assessment, to collect spectral information of one surface in
a relatively short time offering a huge amount of spectral and
spatial information from a sample. Thus, hyperspectral imaging
encompasses the capability of traditional imaging techniques by
obtaining spatial images of a sample at a series of contiguous
wavelengths attaining both spatial and spectral information and
providing reliable and accurate food information [31]. Spectral
measurements can be acquired from several spectroscopic tech-
niques, while visible, near or middle infrared (NIR or MIR), or
Raman spectroscopies are the most popular. Consequently, hyper-
spectral data consist of multicomponent systems since the pixels
measured seldom contain selective wavelengths for a specific
component since they usually contain mixed information of more
than one component. A hyperspectral image represents a particular
case with respect to its structure. Thus, the data defined by three
dimensions, two spatial (X and Y) and one spectral (1), can be ar-
ranged as a three-dimensional array X (X x Y x A), which is ob-
tained for each sample containing all the chemical information
related to the surface measured. Like other sorts of data, hyper-
spectral data present some artifacts such as spectral noise, spatial
interferences, and redundant information, which need to be
properly eliminated prior to the chemometric modeling. On the
other hand, in the mathematical decomposition concerns, the
three-dimensional array is normally unfolded, converting it into a
matrix X with dimensions (MN x A) with a consequent loss of the
spatial relationship. In order to cope with this drawback, some
constraints can be added to the mathematical calculations to pre-
serve the spatial relationship. Further information to deepen these
relevant points has been widely reported in the literature [32,33].
The final target of hyperspectral analysis is to correlate some fea-
tures of the individual objects in an image with some properties of
interest. In this context, hyperspectral devices and chemometric
methods have been successfully implemented in many different
areas of food sciences.

3. Pattern recognition chemometric tools

Traditionally, analytical methods are implemented to achieve a
qualitative/quantitative response related to the presence of macro
and/or micronutrients, toxic compounds, and adulterants, among
others. Often, methods are developed and applied to target species
that act as markers of food integrity [34]. In many cases, food
authentication issues can be properly addressed without the need
for methods that focus on target compounds; they are the so-called
screening methods [35]. Implementing these approaches, issues
such as the geographical origin of food, brand, type of technological
process used in manufacturing, presence, or absence of undeclared
ingredients, etc., can be resolved. PR techniques provide the analyst
with a qualitative or semi-quantitative dichotomous answer, based
on a previous stage of triangulation and adjustment of a model
(linear or not) on a data set containing one or more target classes.
This type of strategy does not involve the quantification of a specific
chemical species, but the modeling of measured data that represent
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part of the composition of the food analyzed. To develop a super-
vised PR-based methodology with the aim of food integrity anal-
ysis, the steps below can be considered as a good way forward:

1. To ask what the best analytical technique is to deal with the
problem to be solved. Aspects such as the detection limit of the
technique, speed of measurement, robustness, portability and
type of information provided should be considered. An example
would be the creation of a methodology to detect gluten in foods
that are mainly gluten-free but could be contaminated during
the production process. While a digital imaging enthusiast
might consider utilizing this method, it might not be the most
effective strategy due to the target species' nature and the po-
tential for very low concentration levels. Spectroscopic fluo-
rescence may be more suitable.

2. In order to develop a sampling strategy that is sufficiently
representative to account for all possible sources of variability,
one must consider all factors carefully. This will undoubtedly
increase the final model's predictive capability. When planning
the sampling process, the analyst should be clear about the
method's ultimate objective. Including extraneous sources of
variability may decrease the fitness quality.

3. After collecting the necessary samples to cover the desired
variability, pretreatment of them is carried out if necessary and
the measurement of the chosen instrumental signal is taken. At
this point, the analyst has obtained a digital file with a data set
that in PR context it would be a matrix X (first-order data or
several matrices in second- or third-order data), and a vector y
(class index). The following is performed on these data: (i) initial
exploratory analyses to obtain knowledge of the data, (ii) pre-
processing in order to remove sources of variability arising from
non-idealities of the measurement systems of the analytical
signal and (iii) partition of the dataset into, at least, two subsets
(training and testing), although in some cases, it can be parti-
tioned into three sets: training, testing, and external validation.

4. The development of data modeling through a suitable classifi-
cation algorithm. It is crucial to consider certain aspects, such as
whether the problem at hand requires discrimination or a
modeling approach, and if the data meet the mathematical and
statistical requirements of the chosen modeling method.

5. After adjusting the model and properly configuring all target
optimization parameters, it is necessary to evaluate the model's
predictive capacity against a set of samples that were not used
during the fitting and optimization steps.

3.1. Sampling and sample set partition

Unlike quantitative methodologies based on multivariate cali-
bration, where the concentration of one or more target species are
obtained using a reference method, in the context of PR a repre-
sentative set of authentic samples must be obtained (authentic here
refers that the samples must actually belong to the class to which
they were included in the modeling step). This is a critical and
challenging point, because in many cases the acquisition of samples
with guaranteed authenticity is not a trivial task or even possible.
When a qualitative PR method is developed it can be of two types.
The first one is based on the detection/quantification of one or more
target species. The second way is the analysis of the sample as a
whole. In this context, the possibilities of ensuring the veracity of
training and validation samples can be categorized into three
groups:

(i) To collect samples from a secure source: in scenarios
involving authentication, brand, process, technology and/or
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geographical origin, among other similar cases, authentic
samples can be collected directly from manufacturers when
possible or even in partnership with regulatory agencies in
each country.

(ii) Reference method: when the methodology and development
although qualitative involves the concentration of one or
more target species, an official reference method can be used
to ensure the authenticity of samples as well as to indicate
samples that do not meet the quantity requirements.

(iii) To mimic of non-authentic (fraudulent) samples: a common
approach in cases involving tampering issues, where
authentic samples are acquired from a secure source and
potential tampering is generated in the laboratory.

Once a representative sample set has been collected, there is the
task of their partitioning. From the mathematical point of view, it is
a finite set partition problem. Briefly, a sample set K with k samples
should be split into two subsets P and Q containing p and q non-
overlapping samples respectively, which means that P n Q is null
and p + q = k. [36]. The most evident manner to make this partition
would be in a random way. However, it is important to note that
extreme samples must be included in the training set to avoid
extrapolation in the prediction step of a set. The word extreme is
being used here in the context of the highest and smallest signals
recorded for every sample of a full set. In this context, some
methods have been proposed for sample set partitioning as it is
shown in Table 1. Most of the sample set partitioning methods were
implemented in the multivariate calibration context, considering
that many users of these tools are not familiar with the program-
ming. It is necessary to keep in mind that the correct way of ar-
ranging and partitioning the dataset must relate to the data
modeling step. A schematic representation of the different data
partitioning approaches is shown in Fig. 2, where it is possible to
note that, unlike multivariate calibration, in the context of PR, the
chosen partition method must be used separately for each class.
Fig. 2a illustrates the scenario where a set of samples (represented
by the yellow square) is considered for building a model taking into
account only a single target class in all optimization steps. This
model will not involve the use of an alternative class (rigorous
way). As can be seen, the sample set partitioning method is applied
only to the matrix of samples that make up the target class (rep-
resented by the green rectangle) and these are divided into three
subgroups: training (light blue rectangle), optimization (violet
rectangle) and evaluation set (orange rectangle). The first two
subsets of samples are used for the modeling and optimization
stages. Then finally the non-target samples are only included in the
prediction step once the model is already fitted to check its ability
to accept and reject the samples according to whether or not they
belong to the target class.

Fig. 2b, in turn, shows a sample set partitioning scheme when
the purpose is to model one or more target classes, but the opti-
mization process will involve the use of one or more alternative
classes (compliant). Note that in this case both sets of samples
(target and non-target) will be submitted to partition as desired,
but this procedure is done individually and the subsets of resulting
samples are gathered at the end of every partition process. Finally,
Fig. 2c shows a case involving modeling via methods where sam-
ples of different classes must be included in the training stage
(discriminant methods, see Section 3.3).

3.2. Pre-processing
Instrumental data recorded from some techniques such as

spectroscopy, chromatography etc., usually present sources of
physical variation due to non-idealities of measurement systems,
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Table 1
Summary of sample selection techniques based on different partitioning of the dataset.
Techniques Background principle Remarks References
Random Randomly. All samples have the same probability to be selected for the training set. [36,37]
selection There is no guarantee of the absence of extrapolation in the prediction step.
K&S algorithm It selects the subset that covers the overall spectral When selecting the outermost samples for training the test set results can be [36,38]
Kernnard-  experimental domain based on their Euclidean distance from very optimistic.
Stone each other.
Duplex It is based on Euclidean distances. It is a variant of K&S When selecting the outermost samples for the training set, the results can be [36,39]
algorithm. very optimistic. However, this effect is greatly reduced compared to K&S.
PCA Manual selection based on sample scores distribution in the =~ Manual strategy not optimized by defined criteria. [36,40]
score plot.
Federov Maximizes the determinant matrix of X"X with X centered a According to comparative studies, it generates good results for using D- [36,41]

algorithm  prior.

optimal strategy.

also called artifacts, or it is just a dataset in different scales of
magnitudes. Anyway, these inconveniences must be properly cor-
rected before data modeling to improve the fit and make the
models less complex. Table 2 displays a summary of the pre-
processing approaches most often reported in the literature. In
many situations, due to the complexity of the data, the use of a
single pre-processing technique is not enough for a total correction
and/or adequacy of the data. In order of making the pre-processing
step more effective, some ensemble approaches have been reported
in the literature in the last years; a complete description of that can
be found elsewhere [36].

3.3. Data modeling

The pre-processed training set undergoes a modeling approach
in this stage. It is worth noting that PR techniques can be catego-
rized into two subgroups: unsupervised and supervised methods.
Supervised methods, on the other hand, can be further classified as
discriminating or modeling. Modeling approaches can be focused
on a single class (one class) or multiple classes, and in both cases,
the approach can be rigorous or compliant, as shown in Fig. 3 (more
details will be provided later). The first subgroup will be discussed
here in the context of initials or exploratory analysis as a previous
step in the development of a supervised model. The second sub-
group will be presented as predictive models in their different
forms and recurrent approaches in the food analysis literature. In
addition, Table S1 shows a list of several chemometric toolboxes to
perform models for PR.

3.3.1. Exploratory algorithms

At the start of developing a PR method, it is crucial to determine
whether the recorded data can effectively differentiate samples
from various target classes. This action involves assessing the
impact of pre-processing and identifying outlier samples. It is also
important to examine the degree of overlap between different
classes to determine whether linear or nonlinear classifiers are
more suitable. Principal component analysis (PCA) is the most
widely used method for this purpose, as it can transform high-
dimensional data and provide results that can be visualized in
two- or three-dimensional spaces (score plots). This allows analysts
to identify clusters and patterns within the data. In contrast, hier-
archical cluster analysis (HCA) does not require prior data trans-
formation and is based on calculating distances and connections
between clusters. However, a variety of distance and cluster
connection techniques can be combined in different ways, leading
to different results. Certain distances, such as the Mahalanobis
distance based on the inverse of the covariance matrix, are only
appropriate for low-dimensional data without high multi-
collinearity [[48],49]. In addition to PCA and HCA, other less
exploited tools can also be used for exploratory analysis purposes as

multidimensional scaling (MDS) and different similarity co-
efficients, where both are based on the distance that is a similarity/
dissimilarity between samples calculated by approaches like
Euclidean, Mahalanobis, and Manhattan approaches, for example
[50].

3.3.2. (lassification models

After splitting and pre-processing the dataset, the analyst typi-
cally gains some understanding of the overall complexity of the
problem through exploratory analysis. The next step is to deter-
mine whether a discriminating or modeling approach should be
employed. In the realm of classification models, significant progress
have been made in distinguishing discriminant from modeling
methods to address food integrity issues [51]. Discriminating
methods, which use multiclass (at least two) during training step
[52,53], are generally more effective than rigorous one-class
models in producing higher specificity and sensitivity models.
Many researchers prefer to use discriminating models over
modeling ones because of the apparent superiority of the former
[51,55]. But it is important to keep in mind that the possibilities of
non-authentic samples are endless, making adequate sampling
impractical. In specific situations where both authentic and false
classes can be accurately sampled, discriminant approaches may be
used to solve authentication issues. In all other cases, it is recom-
mended to use a one-class classifier, even though lower specificity
and sensitivity may be achieved, as it provides more realistic
results.

3.3.2.1. Class-modelling. In class modeling approaches, each target
group is modeled separately, making it possible to create one-class
or multiclass models. For instance, when verifying the authenticity
of a food sample, the target class is defined as authentic samples
and must be sampled representatively. These samples are then
used in the training, optimization, and evaluation stages, with the
model parameters calculated solely on samples from the target
class. Non-authentic or false samples may be included as a non-
target class in the optimization step. The resulting models are
referred to as compliant, with both sensitivity and specificity
available to guide the selection of latent variables and p-values. If
only authentic samples are used in the optimization step, the model
is considered rigorous, with only sensitivity available to make the
decision. In most cases, the modeling parameters representing the
class are estimated and used to define an acceptance area at a given
degree of statistical significance, as summarized in Table 3 [56—58].
The parameters presented in Table 3 form the acceptance area
border, as depicted in Fig. 4.

In Fig. 4, the targeted and untargeted classes are represented by
cylinders and cubes, respectively. Fig. 4a depicts a scenario where
the training step does not include samples from an untargeted
class. This leads to two possibilities: (i) samples belonging to the
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Fig. 2. Schematic diagram of the different forms of arrangement and partitioning of the dataset considering each type of approach that will be adopted: (a) class modeling in
rigorous mode; (b) class modeling in compliant mode and (c) modeling by discriminant methods.
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Table 2
Summary of pre-processing approaches that have been described in the literature for investigating food integrity.
Issue Data type Remarks Reference
Data scale All kinds of data. Autoscaling and normalization. [36]
Baseline Infrared, near-infrared, Raman, chromatographic, Spectral derivatives, baseline correction (offset and linear), asymmetric [36]
electrophoresis, nuclear magnetic resonance, and least-squares.
voltammetry.
Multiplicative Infrared, near-infrared, and Raman. Standard normal variate (SNV), multiplicative scatter correction (MSC), [36,42]

effects
Peak shift

Noise reduction

Chromatographic, electrophoresis, nuclear magnetic
resonance, voltammetry.

Infrared, near-infrared, laser-induced breakdown
spectroscopy, Raman, nuclear magnetic resonance.

spectral derivatives, and normalization.

Dynamic time warping (DTW) and correlation optimized warping (COW), [43]
correlation shifting (coshift), intervals correlation shifting (icoshift),

Fourier transform, wavelet transform, smoothing filters, variable selection. [44]

Missing data Fluorescence, chromatographic, electrophoresis. Maximum likelihood PCA-based data imputation. [45]
Rayleigh (Ry) and  Excitation emission fluorescence data. Asymmetric least-squares, blank subtraction, interpolation-based method, [46,47]
Raman (Rm) gaussian fit-based method.
scatter
PCA O HCA
—)[ Unsupervised ] [ |
> [ Supervised ]
| Class-modelling l | Discriminant l
Multi-class ]
‘ Multi-class
One-class
—
Rigorous
Compliant
Fig. 3. Schematic diagram of different types of pattern recognition approaches.
Table 3
Summary of the ways in which acceptance areas are defined in various classification methods, along with the corresponding statistical assumptions.

Model Parameters Remark Reference
ISIMCA Score and orthogonal distance. Assumes normal and F distribution respectively. [59]
"DD-SIMCA Total distance Assume distribution. [60]
‘PLS-DM Normalized Q and normalized log PF (probability density). Q statistics and normal distribution respectively. [61]
d0C-PLS Absolute centered residual and score distance. Assumes normal and F distribution respectively. [62]
‘M-A CAIMN Leverage in score space. Assumes F distribution. [63]

Soft Independent Model of Class Analogy.
Data Driven — SIMCA.

a
b
¢ Partial Least-Squares — Density Modeling.
4 One Class — Partial Least-Squares.

e

Modeling - Asymmetric (equivalent to a class) Classification and Influence Matrix Analysis method.

targeted class are correctly recognized as such, representing a true
positive; or (ii) a sample belonging to the targeted class is not
properly recognized, resulting in a false negative as it falls outside
the acceptance area.

It is worth noting that modeling approaches rely on a certain
level of statistical significance, which can be assessed by the analyst
or estimated using data-driven methods. When a significance level
of o = 0.05 is selected for the upper confidence limits (UCLs), we
can expect 5 false negatives for every 100 samples. This agreement
between the calculated and a priori sensitivity can serve as a tool

for model optimization and evaluating overfitting. In the evaluation
step, as shown in Fig. 4b, the optimized model is used to predict
samples from both targeted and untargeted classes. This can result
in four possible outcomes: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). Refer to Section 3.3.3 for a
complete description of the figures of merit and their references. By
estimating both sensitivity and specificity, the multiply acceptance
area can be calculated if the problem involves multiclass food
integrity. The compatibility of the samples to be predicted can then
be checked against all available acceptance areas, leading to
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Fig. 4. Schematic of a typical area of acceptance of modeling methods in a rigorous way: (a) training and (b) evaluation stages respectively. Target and non-target samples are
represented as cylinders and cubes in different colors (green cylinders-true positive; yellow cylinders - false negative; blue cube true negative and orange cube false positive).

unambiguous classification in some cases, where a sample belongs
to a single class. In other cases, a sample may be recognized to
belong to at least two classes or not be assigned to any class. This
flexibility of modeling methods makes them suitable for addressing
problems where the non-targeted class does not form a well-
defined group, as samples may come from different sources and
origins, making adequate sampling and modeling challenging or
impossible [59—63].

3.3.2.2. Discriminant models. The discriminant models differ from
class modeling methods as they create a boundary between two or
more modeled classes. Therefore, these methods are effective in
solving problems where all involved classes are well-defined and
have been sampled with sufficient and balanced representation
between classes. A relevant example of the use of discriminant
models in the field of food integrity is the development of a qual-
itative analytical method to screen the shelf life of a given product,
with the classes being “expired” and “not expired.” It is noteworthy
that there is no third possibility for a sample; it is either expired or
not. Since there are two clearly defined classes, it is reasonable to
consider drawing a boundary between them using discriminant
methods. Fig. 5 depicts a visual representation of various discrim-
inant algorithm boundaries.

The literature describes various methods for obtaining bound-
aries, with linear, quadratic, and nonlinear being the most
commonly used [64]. However, all of these methods face the same
challenge when a different sample that does not belong to any of
the previously modeled classes appears in the prediction set. This
results in an incorrect assignment of the sample based on its
proximity to one of the modeled classes. To address this issue,
modified versions of discriminating methods were developed, such
as the soft-PLS-DA method, which defines interval confidence and
class boundaries as shown in Fig. 5d. Table 4 lists some of the most
widely used discriminant methods, with their routines available
(refer to Table S1).

3.3.2.3. Data fusion approaches. Nowadays, the concept of data
fusion has become a trending topic, especially in the field of food
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analysis, mostly to evaluate integrity issues. Indeed, some problems
could be solved just by a combination of data sets coming from
different instrumental techniques that provide synergistic and/or
complementary information. Such an approach is called data fusion
and generally is described as an effort to obtain a single result from
more than one data source. Currently, three data fusion strategies
namely: low-, mid- and high-level have been extensively described
in the literature [21,69]. In this context, the combination of two or
more data sets obtained from multiple sources provided more ac-
curate knowledge about a sample composition. Consequently, more
precise classification and prediction with less uncertainty have
been observed compared to results obtained from a single data set
[70]. However, there are no standard protocols described in the
literature on how to process multisets of data to achieve the final
response using data fusion methodologies. Thus, several studies
[71—74] have explored the measurements recorded by multiple
analytical techniques to increase the possibilities for a better un-
derstanding of food integrity. In this context, the data fusion task is
not only a direct union of two or more datasets, but the main
challenge is a meaningful combination of them followed by suitable
pre-processing and finally validation of designed models [75].
Moreover, it is difficult to know at the beginning, which data fusion
level is required to solve a given food integrity problem without
testing. Usually, starting at a low level (if the data structure allows
doing that) and going up to higher levels, if the results achieved are
not sufficient [76]. Fig. 6 shows the schematic representation of the
data analysis workflow presenting the different data fusion stra-
tegies and the main steps of each, depending on the combination in
which data occurs: low-level, if the raw data is used as an input in
the data fusion procedure; mid-level when the extracted features of
the data are used; and high-level when the data are combined at
the classification/prediction decision level. However, a wide range
of different strategies can be adopted within each level depending
mainly on the dimensionality and structure of data, and even
multiple levels can be combined.

Low-level data comprises the coupling of datasets in the sam-
ples or variable direction depending on the common mode. Since
this level retains all the original information from different sources
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Fig. 5. The sketch of the different forms of boundaries of the discriminant methods.

Table 4

Summary of features in discriminant methods.
Model Type Remark References
LDA? Linear Requires low-dimensional data or must be combined with variable selection. Homoscedasticity assumption.  [65]
QDA" Quadratic It assumes that each class follows a Gaussian distribution. It does not assume an identical covariance matrix. [65]
PLS-DA® Linear Suitable to large data sets even in presence of multicollinearity. Assumes multivariate normal distribution. [66]
Soft-PLS-DAY  Linear Suitable to large data sets even in presence of multicollinearity. Assumes multivariate normal distribution. [66]
PCA-LDA® Linear Suitable to large data sets even in presence of multicollinearity. Homoscedasticity assumption. [67]
KNN' Does not require linearity ~Non-parametric approach. [64]
SVMC® Nonlinear A nonlinear approach to classification problems. [68]
2 Linear Discriminant Analysis.
b Quadratic Discriminant Analysis.
¢ Partial Least-Squares Discriminant Analysis.
94 Soft Partial Least-Squares Discriminant Analysis.
ef Principal Component Analysis - Linear Discriminant Analysis.

K-nearest neighbors' algorithm.
& Support-Vector Machines Classification.

also it normally contains noise and redundant information that can
affect the proper modeling and calculation, for this reason, data
preprocessing steps are usually required. After the data is merged,
it is paramount importance that data from different sources have
comparable scales, as well as to consider unbalanced number of
variables, which should be compensated in order to prevent one
block from being dominant in the subsequent data analysis. In this
sense, a post preprocessing or normalization can be applied ac-
cording to the nature of data matrices. This level is mainly applied
in zeroth- and first-order data due to the facility in concatenation.
For second-order data an unfolding step is usually performed
before the concatenation implying losing the variables meaning for
the performed models, making the interpretation of results hard.
For this reason, other levels are mostly preferred to apply to this
kind of data.

Mid-level data fusion is based on a two-step: the extraction of
relevant features from individual dataset and the subsequent

1

concatenation of the output to build a single matrix to be processed
(Fig. 6). The first step normally can be performed by calculating
latent variables from well-known algorithms such as PCA. However,
a straightforward model interpretation in terms of original vari-
ables can be accomplished from variable selection methodologies.
Noticeably, this level solves the issue of concatenating data blocks
of different order. Moreover, it poses more challenges for second-
order data since multiple strategies for data extraction, compres-
sion, or reduction have been explored for improving outcomes for
food analysis. Compared to low-level strategy, improved results
have been reported for mid-level data fusion, which could be
associated with the features reduction step since the non-
informative variance is removed. Nevertheless, it is relevant to
consider that this way performs more exhausting methodologies
because it applies as many selection algorithms or building as many
models as data sets. Furthermore, a more demanding evaluation of
the results in terms of the raw variables is required to determine
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Fig. 6. Schematic representation of data fusion workflow for low-, mid-, and high-levels.

the relationship between the importance of each feature in the final
model and its corresponding pattern in terms of the original
variables.

High-level data fusion is the most suitable strategy to integrate
heterogeneous information, in such a way that each data block is
treated independently and then, the outcomes (predictions) are
fused to analyze them as a single block. At this level, a new matrix,
containing as many rows as samples and as many columns as
needed to fulfil the outcomes from the different analyses of the
independent data blocks, is created. This data matrix is then
analyzed to get a fused final prediction. In this level, to extract
relevant features is a possible but not mandatory step (grey box in
Fig. 6), which strictly depends on the data structure and data
modeling. The new matrix contains as many rows as samples and as
many columns as needed to fulfil the outcomes from the different
analysis of the independent data. Therefore, this level does not
need to adjust an adequate scaling due to each model being fitted
independently with its best scaling. However, the order of
combining the predictions obtained affects the final decisions.

Most of the data fusion applications in food integrity problems
address authentication while a minor extent focused on their
adulteration. These applications involve the fusion of data blocks
from two or more analytical techniques that provide distinct
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information. Different data fusion strategies reported in the liter-
ature result in more efficient classification models than the models
constructed using the information obtained from each technique
separately [77]. In almost all cases, data fusion application is per-
formed using the methods listed in Tables 3 and 4, which were
developed in a single block concept. The main drawback of this
approach is that common and distinct information in each block
might not be explored properly which could affect the final clas-
sification. In recent years, increasing attention is devoted to the
development of new trends to explore how to efficiently combine
data from multiple sources to extract the much information as
possible. These new approaches are called “multi-block” methods.
During the last 10 years, tools for diverse tasks such as exploratory
data analysis, predictive modeling, variable selection, pre-
processing optimization, and calibration transfer were sufficiently
introduced [78—81]. The main advantage of multi-block data
analysis compared to the standard chemometric methods is that
they allow a comprehensive understanding of different and com-
mon information present in diverse data generated from multiple
sources. A summary of multi-block methods available for multi-
source data integration in chemometrics has been recently re-
ported in the literature [82,83].
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3.3.2.4. Classification algorithms coupled to variable selection.
The initial step in developing an analytical methodology to control
food integrity using PR approaches involves the use of instrumental
techniques such as UV—Vis or FTIR, etc., whose signal acquisition is
fast [84]. Typically, the analytical signal is collected and evaluated
throughout the entire working range of the equipment. Subse-
quently, regions of excessive noise or those with a complete
absence of useful information are often eliminated by simple visual
inspection. However, the remaining data typically consists of a
large volume, much of which is not chemically linked to the target
study (e.g., discriminate or authentic samples). In such scenarios,
variable selection (VS) algorithms can be particularly useful for
obtaining more robust and interpretable models [74—85]. It should
be noted that several reports can be found in the literature
regarding variable selection in discriminating models, including
routines for VS-LDA, VS-PLS-DA, VS-QDA, and VS-SVM. However, to
the best of our knowledge, no variable selection methods are
currently coupled with authentication models. A recent review of
variable selection in food analysis is available elsewhere [86,87].

3.3.3. Model validation

Classification results can be represented in a so-called confusion
matrix, which is a square matrix with dimensions (G x G), being G
the number of classes. The confusion matrix contains information
about actual and predicted classifications based on a classifier that
only assigns each sample to one of the available classes. The matrix
element nGk represents the number of samples belonging to class G
and assigned to class k. The diagonal values (for example nGG)
correspond to the number of correct predictions, whereas the
values outside the diagonal resemble misclassified samples. From
this matrix, several well-established class indices can be derived,
such as sensitivity, specificity, and precision. These measures
describe the classification results achieved on every single class and
should not be taken into consideration, singularly to assess the
predictive ability of a model. In fact, since each measure considers
different aspects of the overall classification performance, the
classification quality should be evaluated considering all of them at
the same time [88].

Several measures for the global estimation of classification
performances have been proposed in the literature, accuracy being
the most known and used [89]. These metrics have been introduced
for different applications and may encode different aspects of the
classification results. Most classification measures were initially
proposed to face binary (two-class) classification tasks (that is, the
discrimination of samples in two classes) and were later adapted to
deal also with multiclass problems, in which samples are divided
into more than two classes. Despite of the confusion matrix con-
taining information on the outcome of the classification modeling,
these are generally encoded into one or more classification mea-
sures. Three well-known class-based measures (sensitivity, speci-
ficity, and precision) can be used to estimate the classification
performance achieved in each class. They are calculated on each
class separately and encode different aspects of the classification.
The sensitivity of a class represents the ability of a given classifier to
correctly identify. The precision of a class is defined as the purity of
a class, that is, the classifier's ability to avoid wrong predictions in
that class. The specificity of a class represents the ability of a clas-
sifier to reject samples of other classes. The two-class case is the
most found type of classification, as several problems can be rep-
resented as binary (yes/no type). When dealing with binary clas-
sifications, samples are usually labeled as positive or negative and
the confusion matrix is reduced to a 2 x 2 numerical table (see
Table 5) [89,90].

Then, the classification measures can be derived from the
confusion matrix. All these measures indirectly refer to the positive
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class. Sensitivity (Sn) is defined as the ratio between TP and the total
number of positive samples:

TP
TP+ EN

Even in the two class cases, sensitivity can be named in different
ways, such as true positive rate (TPR), hit rate, or recall. Specificity
(Sp, also known as true negative rate, TNR) is defined as the ratio
between TN and the total number of negative samples:

sn (1)

Sp— N
P=INT P
Precision (Pr, also known as positive predictive rate, PPR) is

calculated as the ratio of TP and the total number of samples pre-
dicted as positive:

(2)

TP
" TP+ FP

Accuracy is defined as the ratio of the sum of TP and TN over the
total number of samples:

Pr (3)

TP + TN
TP +TN + FP +FN
Moreover, additional indices can be defined, such as negative

predictive value (NPV), false positive rate (FPR) and false negative
rate (FNR):

Acc=

(4)

N

NPV = I8 PN )
FP
FN

4. Practical examples
4.1. Discrimination of edible oil according to the expiration date

This practical example describes the near-infrared spectroscopy
to classify soybean oil according to the expiration date. Note that in
this case, only two classes are possible, expired and unexpired
samples. Thus, both classes can be properly sampled with sufficient
representativeness. Therefore, a discriminating classifier matches
the goals of this study case. One hundred seventy-seven samples
were considered in this example, being 87 non-expired and 90
expired. The oxidation state of soybean oil samples was confirmed
by the peroxide index. More details of this case study can be found
elsewhere [91].

Table 5

Typical structure of confusion matrix in a binary classification problem where TP
(true positives) is the number of positive samples correctly predicted as positive, TN
(true negatives) is the number of negative samples correctly predicted as negative,
FP (false positives) is the number of negative samples predicted as positive, and FN
(false negatives) is the number of positive samples predicted as negative.

Predicted class

P N

Experimental class P P FN
N FP N
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As usual, owing to the lack of previous knowledge of the sam-
ples, the entire operating range of the equipment was used in the
registration of the spectra. Fig. 7a displays the full spectra of the oil
samples, which are presented in different colors (expired —yellow-
and non-expired —blue-) to emphasize that it is not trivial by
simple visual inspection to infer about the kind of samples under
investigation, requiring the use of PR models to solve the current
issue. However, from the spectra, it is possible to visualize three
specific regions related to signal saturation (780—1100 nm), char-
acteristic signal peaks of the samples (1100—2200) and low signal
magnitude (2200—2500). Thus, from this analysis, it is possible to
note the presence of artifacts that need to be corrected.

Firstly, the region of interest (ROI) must be defined, and the
spectral regions previously identified as non-informative must be

10
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Fig. 7. Discrimination of edible oil study case: (a) raw spectra for all samples in blue
non-expired and in red expired samples, (b) ROI selected after preliminary inspection,
(c) set of all spectra after derivative calculation.
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discarded (Fig. 7b). After defining the ROI, the next step is choosing
a pre-processing method capable to deal with the artifacts identi-
fied in the inspection of Fig. 7a.

Within the options mentioned above in Table 2, the Savitzky-
Golay derivative under conditions that represented the best
compromise between removing physical sources of variability
without resulting in signal deformation/suppression were first
derivative, 21 window and second order polynomial) was adopted
as a data pre-processing approach and the results are shown in
Fig. 7c where it is possible to see that both baseline and multipli-
cative effects [42] (the latter is generated by some different path-
length when radiation interacts with the sample) have been duly
corrected. The derivation and smoothing approach of moving filters
should be used with caution regarding their parameters to avoid
amplification of noise and/or not to deform/suppress some nar-
rower peaks. In an initial work, it is extremely encouraged to
evaluate also other possibilities. As it was previously stated,
exploratory analysis via PCA (see Fig. 8) is an alternative way to
investigate the effect of pre-processing of the data and to check if
the data carry the chemical information suitable for distinguishing
particular classes.

()

Explained variance

(b)

Models
Raw data + mean centering Raw data + autoscaling
6 20
24 Sy £ 10
S Be =
N 2 0
8 ~ O
T 0 g -10
-2 -2
-45 -40 -35 -100 0 100 200
PC1 -99.85% PC 1 -89.58%
Derivative + mean centering Derivative + autoscaling
0.1 60
@
N X
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e} ~
= 0 e
o~ N
©.0.05 g ¢
-%O 0

034

0.1
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PC1 -43.78%
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Fig. 8. PCA exploratory step: (a) explained variance for different scenarios (model 1-
top left: raw data +mean centering; model 2 - top right: raw data +mean autoscaling;
(model 3 - bottom left: derivative data +mean centering; model 4 - bottom right:
derivative data +mean autoscaling) and (b) bidimensional PCA score plot (blue circles
are unexpired samples and black squares are expired).
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Thus, PCA was applied to the data set in four different scenarios:
1) raw -+mean centering, 2) raw data autoscaling, 3)
derivative +mean centering, and 4) derivative + autoscaling. First,
attention should be focused on the fraction of variance explained by
each PC. Note that for the first two cases (raw data, see Fig. 8a) the
predominant source of variation is the multiplicative effect; this
hides the chemical sources of data variability and must be removed.
For both cases, the first main component concentrates almost 100%
of the variance; it is always good to be suspicious when this occurs.
When applying PCA to the derived data it is possible to observe a
reasonable distribution of the variance in the other PCs.

Looking at the score plot displayed in Fig. 8b, it is possible to see
how harmful the lack of proper pre-processing can be. In the first
case (raw data +mean centering) it is possible to observe the
multiplicative effect under the spectra, the PC1 versus PC2 scores
plot shows practically a straight line. The next case (raw
data + auto-scaling) is not useful to solve the problem either due to
the significant overlap between studied classes. In the third sce-
nario, it was used derivative +mean centering. Although the de-
rivative approach is efficient for correcting previously identified
artifacts, the two classes do not magically separate, as would be
expected. On the other hand, a good pattern of separation appears
between classes along the axis of PC2 (with about 18% of the
explained variance) when combining derivative and autoscaling.
These results suggest that the main source of variance does not
correspond to the same source of information that distinguishes
the classes under study. Therefore, as shown here, it is a matter of
back-and-forth work between pre-processing and exploratory
analysis to make decisions. Based on those it can be concluded that
infrared data are useful to distinguish non-expired from expired
samples. Additionally, this chemical information is best reassessed
by combining artifact correction (in this case via derivative and
autoscaling).

In this stage, it is important to check the presence of outlier
samples in the dataset, as they can severely distort the quality of fit.
Besides the score graph, PCA also provides another tool such as
residual Q versus Hotelling T? that can be useful to identify this sort
of samples that must be removed (see Fig. S1). To illustrate the
construction of discriminant models, two strategies were chosen:
PLS-DA using full spectral information, and LDA combined with Ant
of Colony Optimization (ACO) as a variable selection strategy for
dimensionality reduction. The dataset was partitioned into three
subsets: training (with 50 samples for each class), validation (10
samples for each class) and testing (with 27 unexpired samples and
30 expired samples) using the KS method. The optimal number of
latent variables (LV) of the PLS-DA model was chosen by cross-
validation leave one out (CVLOO) and to minimize an objective
function the error rate (ER) was used. The screen plot of ER versus
LV depicted in Fig. S2 shows a well-defined minimum for 5 LVs. This
number was selected for the validation step (see Table 6). When the
PLS-DA model with 5 LVs was applied to predict the validation set
in addition to good training results, similar results were achieved,
suggesting that 5 is an adequate number, which gives to the model
predictive capacity and apparent absence of both over and under
fitting. LDA model coupled to ACO was performed using 300 ants
per colony and 500 colonies; the proportion of blind ants per colony
was 30%. For more details on variable selection and tune parame-
ters, see Ref. [92]. Variable selection was carried out taking into
account the risk minimization of misclassification in cross-
validation as defined in Ref. [93]. ACO is a stochastic approach, in
this case, it was run 10 times and the best result was selected as the
final result. It is important to mention that the ACO parameters
were configured based on the authors' previous experience with
the dataset. In an initial study, these should be subject to optimi-
zation. ACO-LDA final model was based on just five wavelengths
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(2102, 1907, 1895, 1400, and 1184 nm, see Fig. S3). That final LDA
model was validated; results can be seen in Tables 6 and in Fig. S4.

As can be appreciated in Table 6, both models achieved com-
parable results. For all cases, the accuracy was always equal to or
greater than 90%. In order to compare this difference between the
used models, the statistic test x> [94] was performed showing no
significant difference (95% of statistical confidence) between the
results obtained by the PLS-DA and ACO-LDA. Thus, both strategies
PLS-DA and LDA achieve equivalent results. The first one, based on
the variable latent structure can be more robust against noise and
small deviation in comparison to LDA. In another hand, the LDA
model, based on a few spectral variables can be more suitable to
solve food integrity problems in line, even to develop devices based
on LEDs and low-cost instrumentation, for instance.

4.2. Classification of selection Slovak Tokaj wine

Tokaj wine is a very famous sweet wine produced in a
geographical region with the same name. This small geographical
region lies between the territories of Slovakia and Hungary.
Slovakia produces different types of Tokaj wine in terms of quality
and price ranging from a few euros to a few hundred. The purpose
of this case study is to illustrate the use of modeling methods,
specifically DD-SIMCA and OC-PLS in the authentication of the
Tokaj selection wines (Hungarian equivalent “Asza”) with respect
to other Slovak wines and Tokaj wines with lower commercial
value, using infrared spectroscopy. A total of 58 samples of Slovakia
Tokaj wines from different categories (varietal Tokaj wines, Tokaj
cuvée, different Tokaj “putna” selections and Tokaj essence) and
vintages (1959—2017) were selected. The complete description of
samples and data acquisition can be found elsewhere [95,96].

Fig. 9a shows recorded IR spectra of Tokaj wine samples in raw
(target class —margent and non-target samples yellow) and de-
rivative spectra (right side). As can be seen in Fig. 9a (left side) both
groups of samples have similar spectra in terms of shape and in-
tensity. Moreover, the dataset also presented baseline trends and
multiplicative effects. These artifacts were removed using the first
derivative and underwent PCA analysis to check the ability of the
spectra to distinguish the target samples from the others. The final
score plot acquired by PCA is shown in Fig. 9b, where is possible to
see slight overlap over the classes suggesting that IR spectra carry
the useful chemical information to authenticate Tokaj Selection
wines.

Two approaches to one class classification in a rigorous way
were selected for this study case: DD-SIMCA and OC-PLS [97]. The
sample set was partitioned according to the diagram shown in
Fig. S5 in Training (20 samples), Validation (10 samples) and Test
sets (30 samples, 10 of the target class and 20 not belonging to the
target class) by KS algorithm. The criterion adopted for the selec-
tion of the factors in each model was the best compromise between
sensitivity and explained variance. The choice for DD-SIMCA was
guided by an external validation set containing only samples
belonging to the target class in accordance with the rigorous one-
class concept (see Fig. S6 and Table S2). It was shown that 4 PC
could explain 96.36% of the variance and achieved 87.5% sensitivity
in the validation step. At the same time, 100% of sensitivity was
achieved in the training set. The acceptance area (see Fig. 10a) was
defined by combining score (SD) and orthogonal (OD) distances
using different degrees of freedom (SD = 5 and OD = 13) and sig-
nificance level (« = 0.045) estimated via data-driven approach base
on y? distribution. The selection of the suitable number of latent
variables in OC-PLS was governed by the standard deviation of
residuals (see Fig. S7) calculated via leave-one-out cross-validation
(LOOCV). The optimal number of LV indicated was later validated
using external data set. The minimal standard deviation of residuals
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Table 6
Figures of merit and confusion matrix for training, validation, and test sets.
Training Validation Test
Expired Non-expired Expired Non-expired Expired Non-expired
PLS-DA (5)* Non-expired (50) 48 2 Non-expired (10) 9 1 Non-expired (30) 25 2
Expired (50) 0 50 Expired (10) 0 10 Expired (29) 1 29
Expired Non-expired Expired Non-expired Expired Non-expired
ACO-LDA (5)** Non-expired (50) 45 5 Non-expired (10) 10 0 Expired (30) 26 1
Expired (50) 1 49 Expired (10) 0 10 Non-expired (29) 5 25
PLS-DA ACO-LDA PLS-DA ACO-LDA PLS-DA ACO-LDA
Accuracy 0.98 0.94 0.95 1.00 0.95 0.90
Error rate 0.02 0.06 0.05 0.00 0.05 0.05
Sensitivity 0.96/1.00 0.90/0.98 0.90/1.00 1.0/1.00 0.92/0.97 0.96/0.83
Selectivity 1.00/0.96 0.98.0.90 1.00/0.90 1.00/1.00 0.97/0.92 0.83/0.96
@ Latent variables and ** spectral variables.
Raw data Derivative sensitivity was achieved in both cases. Only a false negative sample
45 0.05— was observed for the DD-SIMCA model. These results agree with
(a) 4 over fitting-free model.
25 After fitting and validating the models, it is necessary to see
) 0.025 their capability to reject samples not belonging to the target class.
3 For that, a completely independent test set was used in this step,
2.5 é containing both target and non-target samples. The statistical
g 2 g 0 summary of the test step can be seen both in Figs. 10c and f also in
2 K Table 7.
43 a At this stage, a large difference in performance was observed,
1 \ 0.025 although both models exhibited maximum sensibility, only DD-
05 | ' SIMCA also maintained high specificity. This follows from the
0 definition of acceptance areas. DD approach explores the flexibility
concept of the SIMCA method, which allows studying important
o5 soo0 00 2000 4000 parameters such as degrees of freedom in an empirical way for each
Wavenumber (cm™) Wavenumber (cm™) dataset. On the other hand, OC-PLS assumes such parameters a
priori, and in the presence of deviations, the results can be
(b) — ‘ = disastrous.
0.03
® o - .
0.02" 5. Examples from the literature
X 0.01 o .. on He .. .
s 0 ] [ () In addition to the two case studies presented some examples
o 5 mE .... .‘ covering more than 190 papers [98—128, 129-150, 151-180,
' mE S O .% .$. 181-210, 211-240, 241-270, 271—-289] published in the last 10
S 0.01- - ® ® o years (from 2013 to 2022) about the application of chemometric
o u o ® ® (@8 tools in the assessment of food integrity that fits in the paper's
-0.02¢ scope are given in Table 3S. The search parameter and settings
P applied to Scopus perform included: search term (<Food classifi-
-0.03 ° cation>, <Food discrimination>, <Food authentication>); Search
B8 .68 field type (Article title, abstract, keywords); Source type (Journals),

0
PC 1- 83.12%

Fig. 9. Tokaj wine data set, (a) raw (target class —blue and non-target class red) and
derivative spectra, (b) PCA score plot (blue circles and red squares are samples of target
and non-target class respectively).

was achieved for 3 LVs, while it maintained 100% of sensitivity in
both training and validation. Thus, OC-PLS assumes normal distri-
bution for absolute centered residual (ACR), and T> Hotelling for SD
and acceptance area (see Fig. 10d) is built for a default « value of
0.05.

As can be seen in the training step for DD-SIMCA and OC-PLS,
respectively, all samples fall inside of the acceptance area (see
Fig. 10b and e), indicating that the target class is a multimodal
group that can be properly modeled by the strategies of a class.
When validation samples are predictive using the models, high
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Document type (article); Subject areas(Life, health and physical
sciences) and Operator used between two search terms (<and>,
<or>).

Fig. 11 summarizes the different types of food commodities
studied as well as the analytical techniques employed. Most of the
PR-based analytical methodologies were developed for wine
analysis in the last 10 years [98—110, 111—139] in which the main
classification parameters were geographic origin and type of grape
variety. Edible vegetable oils [177—200] and milk and cheese
[221-237,239—242] come in second and third place, respectively.
Minority products include others such as wheat, barley, soybeans,
grain maize, rice, coconut, fruit juice, vinegar, butter, bottled water,
hazelnut paste, nectarine, paprika powder, animal fats, pepper-
corns, pepper powder and rocha pear. From the perspective of the
analytical techniques adopted (Fig. 11b) it is possible to note that
used the vast majority of cases (72%) they use spectroscopic tools
with vibrational spectroscopies that is followed by separation
methods (26%). In addition other techniques are reported in smaller
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Fig. 10. Acceptance area for DD-SIMCA (a, b and c¢) and OC-PLS (d, e and f) models, for training (a and d), optimization (b and e), and evaluation (c and f). Blue circles (true positive),
yellow squares (false positive), red squares (true negative) and violet squares (false negative). The green line is the limit of the acceptance area.

Table 7
Statistical summary of test set prediction.

DD-SIMCA® (4) OC-PLS" (3)

Tokaj Selection Others Tokaj Selection Others

Tokaj Selection (10) 10 0 Tokaj Selection (10) 10 0

Others (20) 1 19 Others (20) 7 13

Sensitivity 1.00 1.00

Specificity 0.95 0.65

Efficiency 0.97 0.77

2 PC in DD SIMCA model.

b LV in OCPLS.
numbers such as: digital image [102,108,251,273], physico- After scrutinizing the two major groups of analytical techniques,
chemical parameters [187], e-sensors (e-eye, e-tongue and e- it is possible to notice that within the separation methods, both
nose) [121,137], isotope determination [255], radioanalytical liquid and gas chromatography are employed in similar pro-
method [262], differential scanning calorimetry (DSC) [210] and portions, while capillary electrophoresis [98,120,186] is little
cyclic voltammetry [217]. explored. In the group of spectroscopic techniques, the vast
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Fig. 11. Percentage distribution of applications found in the literature in the last 10 years: (a) commaodity. *Others include: Wheat, Barley, Soybeans, Grain Maize, Rice, Coconut, Fruit
juice, vinegar, Butter, Bottled water, Hazelnut paste, Nectarine, Paprika powder, Animal fats, Peppercorns, Pepper powder and Rocha pear and (b) Analytical techniques employed. In
Fig. 2b, the total percentage can be greater than 100% because in the same article the authors use more than one analytical technique.

majority make use of vibrational spectroscopy (including ATR-FTIR,
MID and NIR) the second mostly used technique is molecular ab-
sorption spectroscopy in UV—Vis, followed by Raman, molecular
fluorescence and NMR. In a reduced number that added up to a
total of 22% are included the techniques inductively coupled
plasma-mass spectrometry (ICP-MS) [126,158,206], energy disper-
sive X-ray fluorescence spectrometry (EDXRF) [146], paper spray
ionization MS [148,149], desorption atmospheric pressure chemical
ionization mass spectrometry [156], microwave plasma-atomic
emission spectroscopy (MP-AES) [156] for example. In turn, the
chemometric approaches adopted to model those generated in
different analytical platforms are summarized in Fig. 12.
Inspection of articles from the last decade indicated that 13% of
applications consist only of the initial inspection via exploratory
analysis, being the PCA technique the most popular appearing in
almost 100% of the cases. On the other hand, 44% of the applications
involve fitting a supervised PR model to the data for the purpose of
predicting unknown samples. On the other hand, 44% of the ap-
plications involve fitting a supervised PR model to the data with the
purpose of predicting unknown samples. In 43% of cases, unsu-
pervised PR is adopted as a step prior to supervised PR. When
evaluating the type of PR method adopted, it is noted that the
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choice of discriminant methods (with PLD-DA being the favorite
choice) is much superior to that of modeling methods, even when
almost all articles found in the literature are devoted to food
authentication. According to the recent literature [35,51—63] such
methodologies should be modeling based.

6. Conclusion

This review summarizes the use of chemometrics in developing
methodologies for food authenticity or quality control, providing a
pathway to achieving reliable results that include access to
numerous free toolboxes. One significant advantage of classifica-
tion methods in the context of food authenticity is their ability to
implicitly model the partial composition of the chemical constitu-
tion of the samples, taking into account the analytical technique
used, without the need to identify a group of target compounds for
the task. This can result in more comprehensive and efficient
methods in comparison to quantitative determinations. In most of
the applications described in the literature, the authors frequently
note that the food commodity under study has the potential to be
fraudulent, but the samples are obtained from the local market
without any guarantee of their integrity. Therefore, in the
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Fig. 12. Chemometric approach adopted: (a) supervised PR versus unsupervised PR and (b) supervised PR approaches.

validation process, it is necessary to use a reference method or
samples whose origin and authenticity can be confirmed. However,
a reference method or certified samples for classification studies
may be rare or nonexistent. Practically unexplored areas in this
context include the use of classification employing multiway data,
variable selection, and data fusion, particularly with regard to one-
class methods.
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