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Abstract: Triclosan (TCS) is a broad-spectrum antimicrobial agent widely used in personal care,
healthcare, and clinical practice. One of the most important aspects of toxicological profiling of
compounds is their interaction with DNA. In human cells, TCS causes a significant reduction in DNA
methylation. The involvement of TCS in chromosomal aberrations, DNA damage, and strand breaks,
as well as DNA damage from TCS degradation products, was reported. AgNPs share similarities
with TCS in terms of antimicrobial properties, enter the body after exposure, and are used even
together with TCS in oral care products. Therefore, their mutual effect on the DNA is of interest. In
this study, the electrochemical behavior of TCS on a glassy carbon electrode (GCE) and the biosensor
with salmon sperm dsDNA (DNA/GCE), DNA damage by TCS present in phosphate buffer solution
pH 7.4 and an additional effect of the immobilized AgNP layer on such DNA damage have been
investigated. Two different sizes of AgNPs (about 15 and 37 nm) were tested. Using square-wave
voltammetric signals of nucleobases, the portion of survived DNA was 64% in the presence of 15 nm
AgNPs compared to 55% in its absence. The protective effect of AgNPs on DNA against TCS-induced
DNA damage was found.

Keywords: DNA-based biosensor; silver nanoparticles; triclosan

1. Introduction

Triclosan (TCS), 5-chloro-2-(2,4-dichlorophenoxy) phenol, is a broad-spectrum of
antibacterial, antiviral, and antifungal agent frequently used as a preservative during
the past 45 years in pharmaceuticals, personal care products, and cosmetics including
toothpaste [1], soaps, shampoos, skin cleansers, detergents, deodorants, skin care lotions
and creams [2], fabric and plastic additives [3,4], and impregnated in numerous different
materials ranging from athletic clothing to food packaging [5]. TCS has also been used in
surgical scrubs and in hand washing prior to surgery, to eradicate microorganisms such as
methicillin-resistant Staphylococcus aureus (MRSA) [5]. In 1997, the FDA approved the
use of TCS (0.3%) in Colgate Total toothpaste to prevent gingivitis and cavities. At the
widespread use of TCS, it entered the environment and its presence in waters and waste
waters in the US and Europe has been reported [2,6,7]. TCS has been detected in aquatic
organisms, and sediments [8,9]. Significant levels of TCS are detected in body fluids in all
age groups [5]. TCS has been detected in urine, plasma, serum and breast milk in humans
all over the world [10–12]. TCS can accumulate in the human body, [13] where a large
portion of free TCS is localized within the liver [14]. The prevalence of TCS exposure was
indicated among youth [15].

Due to the bioaccumulation of TCS and its resistance to degradation, it represents
a wide hazard to health. Hepatocellular adenomas and carcinomas were found in mice
after exposure to TCS [16], additionally it enhanced liver fibrogenesis and tumorigenesis in
mice [17]. Various toxic effects of TCS have been observed in studies affecting the nervous
system [18–20], reproductive and developmental system [21,22], immune system, also at
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disruption of the endocrine system [23], thyroid hormone homeostasis [5], disturbance of
the intestinal microbiota [24], antibiotic resistance [5,25,26], potential carcinogenicity [27],
and neurotoxicity [28]. Recent data showed that TCS was associated with allergies and hay
fever [29]. TCS can interfere with hormone regulation and fat metabolism that could cause
hormone dyshomeostasis, induction of oxidative stress, apoptosis, and inflammation [30].

The widespread use of silver nanoparticles (AgNPs) in daily products shows great po-
tential due to their effective biocidal activities [31,32]. AgNPs are the most widely used engi-
neered nanoparticles in commercial products such as cosmetics, food, and medicine [33,34].
They share similarities with TCS in terms of antimicrobial properties, microbiome disrup-
tion, implications for antibiotic resistance, and effects on opportunistic pathogens [35]. At
the same time, AgNPs as an alternative to TCS differ from TCS in structural properties,
toxicity mechanisms, and bioavailability. AgNPs in toothpaste, mouthwashes [36], and
other products such as impregnated toothbrushes and cosmetic products for the care of
enamel remineralization and dental hypersensitivity could be responsible for inflammation
of the gastrointestinal tract [37–39]. The nanoscale size range allows the entry of particles
and directly affects intracellular structures [40]. Cellular uptake of engineered nanoparticles
is often size dependent [41]. They persist in different organs up to several months. The
accumulation of AgNPs decreases significantly with increasing size [42]. Furthermore, the
retention of AgNPs was longer within a higher dose of smaller nanoparticles [43].

The antimicrobial effects of AgNPs depend on structural factors such as size, shape,
coating, and ion release [44–46]. Biocompatibility and stability increases with a decrease in
AgNPs size due to the higher surface-area-to-volume ratio [47–49]. The antibacterial activity
of AgNPs smaller than 10 nm is mainly due to an Ag+ release [50]. The colloidal morphology
has higher antibacterial activity when compared to other morphologies [51,52]. AgNPs-
induced neurotoxicity could be reflected in irreversible degenerate spatial cognition [53,54].
A deep transdermal distribution of AgNPs was observed inside the body, followed by
prolonged exposure [55]. However, even more alarming is the accumulation of TCS in body
fluids by rapid absorption through the skin and gastrointestinal tract [56–58]. Therefore,
concomitant exposure of the organism to TCS and AgNPs and their mutual effect on the
DNA is of interest.

One of the most important aspects of the toxicological profiling of various compounds
is their interaction with the DNA molecules [59]. TCS causes a significant reduction in
DNA methylation in human cells [60]. An increase in dose-responsive chromosomal
aberrations [16] and DNA damage [6,61] was observed with exposure to TCS but also to
AgNPs [62]. The interaction of drugs and small species such as nanoparticles with DNA
structure was investigated by electrochemical DNA-based biosensors, which became a very
viable alternative due to high sensitivity in the detection of small differences in double helix
structure compared to other methods [63,64]. Recently, the mechanisms of direct DNA
damage caused by TCS degradation products was thoroughly investigated on a large scale
of pH from 3.4 to 12.04 using a DNA-based biosensor [65]. At the interaction in solution of
0.1 M acetate buffer of pH 4.5; the condensation of double helix chain was found to lead to
the difficulty of nitrogenous bases oxidation on the surface of the glassy carbon electrode
(GCE) as well as the release of guanine moiety [65].

The novelty of our study is to contribute and characterize a prevention of DNA toward
harmful chemicals such as TCS using another potentially protective DNA substance. Such
an approach is known in the chemistry of immobilized species, including the construction
of structured materials and biosensors. With respect to the known association of AgNPs
with dsDNA [66], these nanoparticles of two different sizes, namely Ag1NPs (15 nm) and
Ag2NPs (37 nm), were selected for this study. To prevent acidic or basic DNA denaturation,
in this study the physiological pH value (0.1 mol·L−1 phosphate buffer solution at pH 7.4,
PB) was used. The DNA damage by TCS was investigated using the DNA/GCE and
AgNPs/DNA/GCE biosensors.
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2. Materials and Methods
2.1. Materials

Triclosan (TCS), 5-chloro-2-(2,4-dichlorophenoxy)phenol, and low molecular weight
salmon sperm double helix DNA were purchased from Sigma-Aldrich (Darmstadt, Ger-
many). The 8.6 × 10−4 mol·L−1 stock solution of triclosan was prepared by dissolving TCS
in ethanol: PB solution (1:3 v/v). The final concentration of TCS was achieved by diluting
the stock solution with PB pH 7.4. DNA was dissolved in nanopure water to a concentration
of 1 mg·mL−1. [Fe(CN)6]3−/4−, Na2HPO4 and NaH2PO4 were obtained from Lachema
(Řečkovice, Czech Republic). AgNPs were prepared using a chemical synthesis protocol
described by Martínez-Castañon et al. [67]. Other chemicals of analytical reagent grade
purity were purchased from Mikrochem (Pezinok, Slovakia) or Lachema (Czech Republic).
Nanopure water with a resistivity of about 18 MΩ·cm (Milipore Milli-Q system) was used
for all experiments.

2.2. Apparatus

For all voltammetric experiments an Autolab PGSTAT12 potentiostat/galvanostat
electrochemical system (Metrohm, Barendrecht, The Netherlands) driven by the software
NOVA version 1.10.23 (Metrohm, Barendrecht, The Netherlands) was used. The three-
electrode system consisted of a glassy carbon working electrode (GCE, Metrohm, Baren-
drecht, The Netherlands) with a disc diameter of 3 mm, Ag/AgCl/ 3 mol·L−1 KCl reference
electrode and a platinum wire counter electrode (L-CHEM, Horka nad Moravou, Czech
Republic). All measurements were performed in 20 mL glass cells at ambient temperature.

2.3. Preparation of the Biosensors

The GCE surface was mechanically cleaned on a polishing cloth (BUEHLER, London,
UK) with 0.3 µm alumina suspension (Metrohm, Barendrecht, The Netherlands). GCE
pretreatment was performed by polarization at a potential of 1.6 V for 300 s in 0.1 mol·L−1

PB solution of pH 7.4, and by stabilization of the CV response in 1 × 10−3 M [Fe(CN)6]3−/4−

redox indicator in cycling within the potential range from 1.0 to −0.8 V for 15 scans. The
electrode modification was carried out by covering the pretreated GCE surface with 4 µL
of DNA solution. After drying for 20 min., the DNA/GCE biosensor was stabilized by an
incubation in 0.1 mol·L−1 PB solution for 2 min. For the preparation of Ag/DNA/GCE
biosensor, 4 µL of 1 × 10−3 mol·L−1 AgNPs solution was dropped on the surface of the dry
DNA/GCE biosensor and allowed to evaporate for 30 min. After 2 min. stabilization in PB
solution, the Ag/DNA/GCE biosensor was used in the experiments.

2.4. Methods
2.4.1. Cyclic Voltammetry (CV)

CV scans were recorded within a potential range from 1.2 V to 0.0 V at a scan rate of
100 mV·s–1 and a potential step of 2 mV in 0.1 mol·L−1 PB or 1 mmol·L−1 [Fe(CN)6]3−/4−

redox indicator in PB pH 7.4 with/without TCS in 20 mL electrochemical cell at laboratory
temperature 21 ◦C.

2.4.2. Square-Wave Voltammetry (SWV)

Square-wave voltammograms (SWV) were recorded under the following experimental
conditions: potential step 4 mV, scan rate 200 mV·s−1, pulse amplitude 20 mV, frequency
50 Hz.

3. Results and Discussion
3.1. Characterization of the DNA/GCE Biosensor Stability

The first step in the preparation of the biosensor was the immobilization of DNA on
the GCE working electrode, checked by the voltammetric response. A badly developed
CV curve of the typical [Fe(CN)6]3−/4− redox indicator on the DNA modified electrode,
compared to the bare GCE is known to be the result of an electrostatic repulsion of indicator
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anions by the negatively charged surface-attached DNA backbone (Figure 1). Treatment
of the newly prepared DNA/GCE biosensor in 1 × 10−3 mol·L−1 redox indicator in PB
pH 7.4 for selected time periods has been used to to stabilize the DNA layer. The CV peak
current values rise slightly with time of the biosensor incubation indicating an efficient and
stable GCE coverage by DNA (Figure 1A).
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Figure 1. CV curves for 1 × 10−3 mol·L−1 redox indicator (A) and SWV (B) curves obtained for
the bare GCE and DNA/GCE biosensor in 0.1 mol·L−1 PB pH 7.4 after treatment in the supporting
electrolyte for a given time. Conditions: CV step potential 2 mV, scan rate 100 mV·s−1; SWV
amplitude 20 mV, frequency 50 Hz, step potential 4 mV and scan rate 200 mV·s−1.

Square wave voltammetry (SWV) is a suitable electroanalytical method for the determi-
nation of both the triclosan and the guanine (G) and adenine (A) moieties. The optimization
study revealed (data not shown) that the set of pulse amplitude of 20 mV, frequency of
50 Hz, step potential of 4 mV, and scan rate of 200 mV·s−1 were best for monitoring. SWV
peak currents of the G and A moieties decreased slightly within the given time intervals of
the biosensor pretreatment in the supporting electrolyte (Figure 1B). As 2 min. treatment in
PB solution was again the shortest time in which leaching of free DNA is nearly finished, it
has been selected as appropriate for the newly prepared biosensor.

3.2. Effect of AgNPs on DNA/GCE Biosensor

To avoid the signal interferences of AgNPs with DNA, an optimization study with
several dilutions of nanoparticle solutions was performed by a set of voltammetric ex-
periments. Stock solutions of the corresponding 1 × 10−3 mol·L−1 AgNPs were diluted
1:3, 1:5, and 1:10 (v/v) with PB pH 7.4 and dropped on the surface of DNA/GCE. After
30 min. incubation period and 2 min. biosensor treatment in 0.1 mol·L−1 PB pH 7.4, SWV
curves were recorded (Figure 2). The anodic peak potential values of 0.975 V and 1.251 V,
EpG and EpA, were observed for the guanine (G) and adenine (A) moieties, respectively.
The corresponding SWV current responses of the deoxynucleotides decreased with the
concentration of nanoparticles applied. This decrease can be explained by a barrier effect for
electron transfer evidently caused by an association of AgNPs with the dsDNA backbone
as recently described [68]. Based on these results, the concentration of 1 × 10−4 mol·L−1

Ag1 and Ag2 nanoparticles was chosen for ongoing measurements which corresponds to
a 1:10 (v/v) dilution of nanoparticles stock solution with PB. This AgNPs concentration
should protect the DNA layer by association and, at the same time, not interfere with the
detection of an effect of TCS in a further study. No GCE surface passivation by AgNPs was
detected under these conditions.
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Figure 2. SWV curves recorded after 30 min. incubation of the DNA/GCE biosensor with Ag1
(A) and Ag2 (B) nanoparticles followed by 2 min. biosensor treatment in 0.1 mol·L−1 PB pH 7.4. SWV
conditions: amplitude 20 mV, frequency 50 Hz, step potential 4 mV and scan rate 200 mV·s−1.

3.3. Effect of TCS on DNA/GCE Biosensor

The basic voltammetric behavior of TCS alone was previously described [65,69] and
also confirmed in this work (data not shown). TCS exhibited the anodic response in
the 0.57 V region vs. Ag/AgCl which depended on the TCS concentration within the
range from 4 × 10−6 to 8 × 10−5 mol·L−1. However, TCS degrades the DNA molecule
in concentration and time depending manner and our study was further directed at the
detection of DNA changes. The effect of TCS on DNA was monitored using the SWV
responses of nucleobase moieties after an incubation of the biosensor in TSC solutions
for 15 min under stirring (Figure 3). Within the increasing concentrations of TCS, the IpG
values significantly decrease while the EpG values slightly shift from 0.975 V toward the
less positive potential of 0.960 V. The IpA response also decreases and the EpA values shift
from 1.251 V to 1.233 V. Additionally, a SWV response of a TCS residue was detected as a
small wide peak in the potential region of 0.57 V (Figure 3). This is in agreement with [65]
where a similar peak was observed depending on the pH of the medium used. Changes in
nucleobases responses confirm damage to DNA by the TCS drug, accompanied by a partial
liberation of nucleobases bonds in the helix [70].
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3.4. Effect of TCS on Ag/DNA/GCE Biosensor

The mutual effect of TCS and AgNPs toward surface-attached DNA damage was tested
using the Ag/DNA/GCE biosensor. The Ag1/DNA/GCE and Ag2/DNA/GCE biosensors
were immersed in the TSC solution of various concentrations and allowed to incubate
for 15 min under stirring. The SW voltammograms were then recorded immediately and
directly in the TCS solution. In Figure 4A,B a decrease in the IpG and IpA values can
be seen at both the Ag1/DNA/GCE and Ag2/DNA/GCE biosensors in proportion to
increase in the triclosan concentration. The small EpG shift to more negative potential
values was observed only at Ag1/DNA/GCE. Again, the TCS residue can be observed as a
slightly growing peak in the potential region of 0.57 V. The decrease in the IpG response
is less exhibited for Ag1/DNA/GCE. It is possible to conclude that both AgNPs used for
the biosensor surface modification have protected the surface-attached DNA against its
TCS-induced damage.
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3.5. Protective Effect of AgNPs on DNA Damage by TCS

An overall comparison of a decrease in the fraction of survived dsDNA (expressed
by the relative current response of the nucleobases moieties) with an increase in the TCS
concentration in the absence and in the presence of Ag nanoparticles is depicted in Figure 5.
In most cases, a protection of DNA by the immobilized AgNPs (red and green columns)
is seen.
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Figure 5. The amount of survived surface attached dsDNA expressed by its relative guanine moiety
SWV peak current response in dependence on the concentration of TCS used at the 15 min incubation
of DNA/GCE, Ag1/DNA/GCE and Ag2/DNA/GCE in TCS solutions.
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The protective effect of AgNPs can be explained by their already reported direct
interaction with the structure of dsDNA [68] and probably also by an interaction of TCS
with AgNPs similarly to TiO2 nanoparticles [71]. It seems that Ag1NPs with smaller
dimensions (15 nm) adsorb on the dsDNA structure in a greater amount than Ag2NPs
(37 nm), and somewhat better prevent the interaction of triclosan with dsDNA. DNA
protection could be further improved using a higher amount of the Ag nanoparticles (i.e., a
smaller dilution of the AgNPs solution such as 1:5).

4. Conclusions

DNA—drug interactions are of permanent interest, particularly for species that indi-
cate potential damaging effects such as triclosan. In this study, the experimental conditions
for examining the effects of TCS on surface-attacheddsDNA were optimized and subse-
quently applied to the analysis of the DNA—TCS interaction with the electrochemical
DNA/GCE biosensor. The negative effect of triclosan on DNA the helix structure was
confirmed by monitoring the nucleobases responses. The silver nanoparticles immobilized
over DNA exhibited some protection against TCS present in the solution phase, which
revealed less damage to the DNA structure.

The results obtained here indicate a possibility of decreasing the toxic effect of TCS
toward DNA by the presence of third species such as AgNPs. This can be of general interest
in the case of a necessity of the elimination of unwanted effects of chemicals. For such
further study we plan the investigation of morphology of the electrode surface modification
as well as changes in the DNA structure using FTIR and Raman spectroscopies with special
equipment allowing the measurement at the electrode body.
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