

TESTOVANIE BIOKOMPATIBILITY IMPLANTÁTOV NA MIERU VYROBENÝCH ADITÍVNYMI TECHNOLÓGIAMI

Simona Bodnárová, Radovan Hudák, Jozef Živčák

II. Odborný seminár aditívnej výroby

Bratislava 2019

Obsah

Teoretická časť práce

Charakteristika kostného tkaniva

Možnosti náhrad kostného tkaniva

Kalcium fosfátová keramika

 Možnosti prípravy substitútov kostného tkaniva

Experimentálna časť práce

Návrh a výroba biokeramických vzoriek aditívnou technológiou

Stanovenie základných parametrov vzoriek

Analýza kalcium fosfátových vzoriek technológiou priemyselného CT

Stanovenie mechanických vlastností v jednoosom tlaku

Testovanie biokompatibility biokeramických skáfoldov

ANALÝZA SÚČASNÉHO STAVU

Charakteristika kostného tkaniva

- Komplexný, hierarchický organizovaný systém
- Pozostáva z proteínovej extracelulárnej matrix napustenej apatitovými kryštálmi (analogicky kompozit)

Druh kosti	Spôsob Zaťaženia	Kosť	Modul elasticity [GPa]	Napätie v ťahu [MPa]	Napätie v tlaku [MPa]
		Femur	17,2	121	167
	Pozdĺžne	Tíbia	18,1	140	159
копсациу		Fibula	18,6	146	123
Kosti hornej končatiny		Humerus	17,2	130	132
	Pozdĺžne	Radius	18,6	149	114
		Ulna	18,0	148	117
	Pozdĺžne	Cervikálne	0,23	3,1	10
Stower		Lumbálne	0,16	3,7	5
Stavce		Spongiózna časť	0,09	1,2	1,9
	Tangenciálne		-	25	-
	Radiálne		-	-	97
Серка		Mandibula	-	-	37,8
	-	Cranium	-	-	50

Tab. Mechanické vlastnosti kostí

Obr. Grafy napätia a pomernej deformácie pre kortikálnu a trabekulárnu kosť

Zdroj: WEGST, U. et al. Bioinspired structural materials. Nature materials, 2015, 14.1: 23.; PARK, J. Bioceramics: properties, characterizations, and applications. Springer Science & Business Media, 2009.

MORGAN, EF. et al.. The bone organ system: form and function. In: Osteoporosis. Academic Press, 2013. p. 3-20.

Možnosti náhrad kostného tkaniva

IACCARINO, C. et al.: F. Preliminary results of a prospective study on methods of cranial reconstruction. J. Oral Maxillofac₅Surg. 2015, 73, 2375–2378.:

Kalcium fosfátová biokeramika

- Chemicky podobná s minerálnou zložkou kostí cicavcov
- Zmes Hydroxyapatitu a β-Trikalcium fosfátu (HAP je viac rozpustný ako TCP, ktorý je zas stabilnejší => bifázický kalcium fosfát)
- Vykazuje vhodné biokompatibilné a osteokonduktívne vlastnosti

Mechanické vla	stnosti	Fyzikálne vlastnosti		
Pevnosť v ťahu	38-300 MPa	Hustota	2,55-3,21 g/cm ³	
Pevnosť v tlaku	90-120 MPa	Koeficient	11,6- 14,2x 10-	
		tepelnej	6/ °C	
		rozťažnosti		
Pevnosť v ohybe	38-250 MPa	Tepelná vodivosť	1-1,2 /WmK	
Youngov modul	35-120 GPa	Teplota topenia	1250°C	
pružnosti				
Tvrdosť podľa Vickersa	3-7 GPa			
Poissonovo číslo	0,27			
Lomová húževnatosť	1,20± 0,05 MPa			
	m ^{1/2}			

Tab. Vybrané mechanické a fyzikálne vlastnosti hydroxyapatitovej keramiky

Obr. Štruktúra Trikalcium fosfátu

Zdroj: M. Ebrahimi, et al., Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization Mater. Sci. Eng., C (2016)
 BIAN, W. et al. Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. *Rapid Prototyping Journal*. 2012, 18(1), 38-80

Analýza súčasného stavu

Možnosti prípravy substitútov kostného tkaniva

AUTORI	PRIPRAVENÝ SKÁFOLD	POUŽITÁ TECHNOLÓGIA	VÝSLEDNÉ MECHANICKÉ VLASTNOSTI
LI ET AL.	- SAKO Chippen Birtis - Kinty - Kinty - Kinty - Kinty	Stereolitografia (Kostné tkanivo- TCP) + Sól gél (chrupavka- kolagén)	 Pevnosť v tlaku 12 MPa Biologické hodnotenie na animálnom modeli mezenchýmových buniek izolovaných z kostnej drene králika v podmienkach in vitro
KOLAN ET AL.		Selektívne laserové sinterovanie (Kalcium fosfátová keramika)	- Pevnosť v tlaku 41 MPa (skáfold s 50 % pórovitosťou)
TEO ET AL.		Modelovanie nanášaním taveniny (Zmes polykaprolaktónu a biokeramiky)	- Neboli stanovené
CASTILHO ET AL.	S mm	Vytvrdzovanie prášku	-Pevnosť v tlaku 12,5 MPa (skáfold s veľkosťou pórov 500 μm) -Pevnosť v tlaku 9,22 MPa (skáfold s veľkosťou pórov 750 μm) -Pevnosť v tlaku 8,23 MPa (skáfold s veľkosťou pórov 750 μm)
HOUMARD ET AL.		Technológia riadenej tryskovej tlače	- Pevnosť v tlaku 3 MPa (skáfold s 80 % pórovitosťou)

Tab. Porovnanie vytvorených skáfoldov rôznymi typmi aditívnych technológií a ich testovania

Zdroj: Li, X. et al. 2011. Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics. In Journal of biomedical materials research. Part B, Applied biomaterials., KOLAN, KCR et al. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering. Journal of the mechanical behavior of biomedical materials.) TEO, EY et al. Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds CASTILHO, M. et al.. Fabrication of computationally designed scaffolds by low temperature 3D printing. BIOFABRICATION. 2013, HOUMARD M. et al. On the structural, mechanical, and biodegradation properties of HA/b-TCP robocast scaffolds. J Biomed Mater Res Part B

EXPERIMENTÁLNA ČASŤ

Metodika experimentálnych prác

Návrh a výroba biokeramických vzoriek aditívnou technológiou

Obr. 3D tlačiareň použitá na prípravu vzoriek CeraFab 8500 (Lithoz, Rakúsko) a princíp technológie LCM

Obr. Výroba biokeramických vzoriek techológiou 3D tlače litografickou technikou

Stanovenie základných parametrov vzoriek

POZOSTÁVAL Z DVOCH KROKOV:

STANOVENIE VONKAJŠÍCH ROZMEROV CYLINDRICKÝCH VZORIEK

- Hodnotila sa výška h a priemer vzorky (φ)
- Posuvným meradlom

STANOVENIE HMOTNOSTÍ CYLINDRICKÝCH VZORIEK

- Odváženie jednej vzorky 30x pre kontrolu váženia a stanovenie štandardnej neistoty typu A
- Váženie kalcium fosfátových vzoriek na analytických váhach

Stanovenie vonkajších rozmerov cylindrických vzoriek

		200	μm	400	μm	600	μm
		Výška [mm]	Priemer [mm]	Výška [mm]	Priemer [mm]	Výška [mm]	Priemer [mm]
ČISTÝ HAP	\overline{X}	19,62	9,42	20,22	9,42	19,79	9,96
	SD	0,084	0,035	0,22	0,21	0,15	0,068
ČISTÉ TCP	\overline{X}	20,72	10,62	20,22	9,42	19,84	9,96
	SD	0,12	0,063	0,22	0,21	0,084	0,073
HATCP 37	\overline{X}	19,51	9,73	19,69	9,99	19,46	10,21
	SD	0,080	0,037	0,14	0,098	0,066	0,041
HATPCP 73	\bar{X}	19,44	9,45	19,76	9,50	19,17	10,13
	SD	0,10	0,023	0,092	0,051	0,072	0,036
HATPCP 55	\bar{X}	18,97	9,89	18,94	9,54	19,26	10,23
	SD	0,095	0,065	0,11	0,098	0,050	0,041

Tab. Priemerné hodnoty a smerodajné odchýlky výšok a priemerov cylindrických vzoriek

Ako kritérium presnosti bol zvolený priemer podstavy, nakoľko výška valca je upravovaná v priebehu odstraňovania zo stavebnej platformy Z nameraných údajov vyplýva, že najbližšie sa nominálnej vzorke (s priemerom podstavy 10 mm) približujú tieto:

- Pre veľkosť pórov 200 μm: materiál HATCP 55, kde priemer podstavy je 9,89 mm.
- Pre veľkosť pórov 400 μm: materiál HATCP 37, kde priemer podstavy je 9,99 mm.
- Pre veľkosť pórov 600 μm: materiály čistý HAP a čisté TCP majú zhodný priemer podstavy 9,96 mm nižšia smerodajná odchýlka (SD= ±0,068) bola stanovená pre materiál čistý hydroxyapatit.

Experimentálna časť dizertačnej práce- Stanovenie hmotností cylindrických vzoriek

Váženie kalcium fosfátových vzoriek na analytických váhach

Materiál: Čistý Hydroxyapatit								
	200)μm	400	μm	600 µm			
Číslo	Hmotnosť [g]	Objem [mm3]	Hmotnosť [g]	Objem [mm3]	Hmotnosť [g]	Objem [mm3]		
1	2,0933	1392,026	1,0822	1420,575	0,8529	1558,987		
2	2,0548	1381,018	1,064	1445,783	0,8535	1542,687		
••••								
29	2,1707	1373,781	1,1388	1444,973	0,6993	1490,471		
30	2,0251	1340,959	1,127	1408,504	0,685	1500,382		
\overline{X}	2,071		1,121		0,752			
SD	0,064		0,053		0,069			

Tab. Hmotnosť a objem cylindrických vzoriek pre materiál Hydroxyapatit

Na základe hmotnosti a objemu cylindrických vzoriek nie je možné predikovať zaliatie ich pórov a preto nastala potreba podrobiť vzorky analýze prostredníctvom počítačovej tomografie. Táto skutočnosť môže byť spôsobená chýbajúcimi drobnými časťami vo vzorkách (úlomky obrysov vrstiev nakoľko ich hrúbka bola menšia ako hrúbka jednotlivých vrstiev). Tento problém je vhodné podrobiť ďalšiemu štúdiu, kde by sa stanovili hrúbky stien u jednotlivých štruktúr.

Obr. Grafická reprezentácia získaných dát pre hmotnosť a dorátaný objem cylindrických vzoriek pre materiál Hydroxyapatit

Experimentálna časť -Analýza keramických vzoriek priemyselným CT

Analýza kalcium fosfátových vzoriek technológiou priemyselného CT

SKENOVANIE KUBICKÝCH VZORIEK

Obr. RTG kubickej vzorky

- a. Na Obr. hore je znázornený rez vzorkou vyrobenou z HA s porozitou 200 μm. Vpravo je iba rez z CT (Metrotom 1500, Carl Zeiss, Nemecko) a vľavo rovnaký rez s STL modelom (oranžovou). Ako je vidno, umiestnenie a veľkosť pórov na CT nie je totožná s pórmi na STL modeli. Je to z dôvodu zmrštenia materiálu, pričom koeficient zmrštenia je v rôznych smeroch rôzny. Spodná časť STL modelu slúži ako prídavok kvôli orezaniu dielu zo stavacej platne
- b. Pri výrobe štruktúry došlo k zaliatiu pórov v strede vzorky, z dôvodu nedostatočného opracovania vzorky po tlači

SKENOVANIE CYLINDRICKÝCH VZORIEK

Obr. RTG cylindrickej vzorky

- a. zaliate póry u vzorky s veľkosťou pórov 200 μm nevyplavenou fotosenzitívnou biokeramickou zmesou, ktorá nebola počas procesu následného spracovania po tlači,
- b. poškodená vnútorná štruktúra u vzorky veľkosťou pórov 200 µm,
- c. nižšia hrúbka vrstvy u vzorky veľkosťou pórov 200 µm,
- d. nedostatočne odstránená stavebná podpora u vzorky veľkosťou pórov 200 µm,,
- e. chýbajúca vonkajšia štruktúra u vzorky veľkosťou pórov 400 µm,
- f. nečistota nachádzajúca sa vo vnútri póru u vzorky veľkosťou pórov 400 µm,
- g. zošikmená vrstva biokeramickej vzorky veľkosťou pórov 400 μm, jednotlivé vrstvy neboli pri tlači vodorovne vytlačené
- h. chýbajúce časti vonkajšej štruktúry u vzorky veľkosťou pórov 600 µm,
- . nesprávny tvar póru (nemajú štvorcový prierez) u vzorky veľkosťou pórov 600 μm,
- j. prasklina vo vonkajšej štruktúre u vzorky veľkosťou pórov 600 µm,
- k. menšia hrúbka vrstvy u vzorky veľkosťou pórov 600 μm.

Experimentálna časť - Určenie objemovej hmotnosti cylindrických vzoriek

Určenie objemovej hmotnosti cylindrických vzoriek na podklade CT dát

ALGORITMUS URČENIA OBJEMU

STANOVENÉ HODNOTY OBJEMU

ΜΑΤΕΒΙΑΊ	CHARAKTERISTIKA	200 µm	400 µm	600 µm
		Objem [mm³]	Objem [mm ³]	Objem [mm ³]
	Najľahšia vzorka	755,898	386,554	252,329
	Najťažšia vzorka	878,29	476,702	326,122
	Stredná hodnota	805,623	420,194	272,279
ČISTÝ HAP	Vzorka z intervalu najľahšia – stredná hodnota	802,087	419,247	317,866
	Vzorka z intervalu najťažšia – stredná hodnota	770,247	405,421	248,563
	Najľahšia vzorka	862,952	306,425	238,586
	Najťažšia vzorka	733,096	383,549	306,741
	Stredná hodnota	772,886	330,195	276,991
ČISTÉ TCP	Vzorka z intervalu najľahšia – stredná hodnota	764,823	350,671	298,117
	Vzorka z intervalu najťažšia – stredná hodnota	902,94	317,762	259,545

Tab. Stanovené hodnoty pre reálny objem na podklade dát z CT

Určenie objemovej hmotnosti cylindrických vzoriek na podklade CT dát

	200 µn	n	400 μr	n	600 μm		Celkovo	
MATERIÁL	Aritmetický	SD	Aritmetický	SD	Aritmetický	SD	Hustota	SD
	priemer		priemer		priemer		[g/cm]	
ČISTÝ HAP	2,6212	0,041	2,6772	0,039	2,7198	0,14	2,6727	0,091
ČISTÉ TCP	2,8024	0,084	3,0558	0,031	3,0654	0,024	2,9745	0,14
HATCP 37	2,9268	0,039	2,9886	0,049	3,0456	0,049	2,987	0,66
HATPCP 73	2,9824	0,048	3,0348	0,046	3,036	0,087	3,0177	0,64
HATPCP 55	2,9628	0,022	2,9628	0,022	2,9752	0,031	2,9237	0,087

Tab. Dorátaný aritmetický priemer a smerodajné odchýlky pre stanovené objemové hmostnosti

	Kruskal-Wallisov test: H =38,47879 p = 0,0000					
	НАР	HATCP37	HATCP73	HATCP55	ТСР	
НАР		0,000051	0,000000	0,019384	0,000013	
HATCP37	0,000051		1,000000	1,000000	1,000000	
HATCP73	0,000000	1,000000		0,169649	1,000000	
HATCP55	0,019384	1,000000	0,169649		0,814328	
ТСР	0,000013	1,000000	1,000000	0,814328		

Tab. Kruskal Wallisov a post hoc test pre získané objemové hmotnosti

Obr. Box plot pre získané objemové hmotnosti

Ako závislá premenná sa stanovil parameter objemová hmotnosť, pričom grupovacou (nezávislou) premennou bol Materiál.

Objemová hmotnosť je závislá na materiáli

Experimentálna časť dizertačnej práce- Analýza keramických vzoriek priemyselným CT

Stanovenie plôch cylindrických vzoriek pre výpočet jednoosého tlaku

ALGORITMUS STANOVENIA PLOCHY

PRIEREZ VZORKY

Obr. Postup určenia plochy v softvéri FIJI ImageJ (NIH, USA)

Obr. Ukážka podkladov pre stanovenie plochy prierezu (vpravo) a pre stanovenie plochy stĺpikov (vľavo)

Statická skúška v jednoosom tlaku

PRINCÍP STATICKEJ SKÚŠKY V TLAKU

Obr. Rozdrvená vzorka v čeľustiach jednoosého univerzálneho stroja

- Podľa vzorca:

$$\sigma = \frac{F}{A} [MPa]$$

ZÍSKANÉ A DORÁTANÉ DÁTA

ČISTÝ HYDROXYAPATIT						
veľkosť Pórov	Vzorka	F max [N]	Napätie na prierezoch [MPa]	Napätie na stĺpikoch [MPa]		
200 µm	Priemer	1360,633	21,107	58,289		
	SD	798,505	12,387	34,206		
400 µm	Priemer	684,515	14,030	72,854		
	SD	215,469	4,416	22,932		
C00	Priemer	322,001	5,528	44,474		
ουυ μπ	SD	269,706	3,280	26,391		

Tab. Stanovené hodnoty maximálnej sily a z nej vyrátané hodnoty napätia na priereze a na stĺpikoch

- Získané napätia na prierezoch sa pohybujú v intervale od 3,28 MPa do 21,107 MPa
- Získané napätia na stĺpikoch sa pohybujú v intervale od 26,391 MPa do 72,854 MPa

Experimentálna časť dizertačnej práce- Stanovenie mechanických vlastností v tlaku

Štatistické vyhodnotenie získaných dát

Materiál

Medián

25%-75%

Min-Max

Zhodnotenie získaných dát

Porovnanie napätia v tlaku na priereze vzhľadom k hodnotám napätia v tlaku pre humánnu kosť

Obr. Porovnanie napätia v tlaku pre keramické vzorky a humánne kosti

- Ako substitúty kraniálnej kosti by mohli byť vytvorené porézne štruktúry s veľkosťou pórov 200 μm zo zmesi materiálu Hydroxyapatit a Trikalcium fosfát v pomere 30:70 a 70:30. Ostatné vzorky nesĺňajú parametre pre túto potencionálnu aplikáciu.
- Náhrady mandibuly (porézne štruktúry s veľkosťou pórov 200 μm) by mohli vytvorené zo zmesi Hydroxyapatit a Trikalcium fosfát v nasledovných pomeroch 30:70; 70:30; 50:50.
- Náhradou mandibuly by mohli byť porézne štruktúry s veľkosťou pórov 400 μm zo zmesi materiálov Hydroxyapatit a Trikalcium fosfát v pomere 30:70.

Experimentálna časť dizertačnej práce- Určenie cytotoxického účinku biokeramických vzoriek pripravených aditívnou technológiou

Stanovenie biokompatibility kalcium fosfátových vzoriek

Príprava kubických vzoriek technológiou 3D tlače litografickou technikou

> Izolácia humánnych mezenchýmových kmeňových buniek z podkožného tuku

> > Ko-kultivácia humánnych mezenchýmových kmeňových buniek na biokeramických skáfoldoch

> > > MTT test na stanovenie cytotoxického účinku

Verifikácia adherencie kmeňových buniek v biokeramickej matrici

Obr. Proliferačná aktivita kmeňových buniek izolovaných z podkožného tuku na biokeramickom skáfolde

Obr. Dôkaz prítomnosti mezenchýmových kmeňových buniek na kalcium fosfátovom skáfolde. Hore pohľad zvrchu, dole pohľad zboku.

Záver

- Medicína, ako oblasť aplikácie aditívnej výroby je jedna z najrýchlejšie rastúcich aplikačných oblastí, cieľom aditívne vyrobenej štruktúry (implantátu) vyplnenie oblasti defektu telu vlastným tkanivom
- Z dosiahnutých výsledkov možno konštatovať, že veľkosť pórov má vplyv na napätie v tlaku na priereze cylindrických vzoriek, čo sa potvrdilo. Nebolo však dokázané, že kritickým parametrom je napätie v tlaku na stĺpikoch, pretože hodnoty napätia na stĺpikoch boli násobne vyššie ako hodnoty napätia v tlaku na priereze.
- Biokeramické skáfoldy nemajú negatívny proliferačný efekt pre kmeňové bunky

Obr. Vzorka kraniálneho implantátu pripraveného otestovanou technológiou pre zamýšľané miesto implantácie

ĎAKUJEM ZA POZORNOSŤ